
Plataforma Low-Code para la Creación Visual y Generación Automática de
Arquitecturas de Microservicios

EthAIca. 2024; 3:104
doi: 10.56294/ai2024104

ORIGINAL

Low-Code Platform for Visual Creation and Automatic Generation of Microservice
Architectures

Tomás Darquier1, Pablo Alejandro Virgolini1

ABSTRACT

With the growing adoption of the microservices paradigm, numerous benefits have been achieved in software
development. Nonetheless, this methodology also has certain drawbacks. Through various data collection
techniques, one identified issue is the unnecessary repetition in the development of common components
for generic systems. Developers are often required to recreate these components multiple times across
different systems and must manually configure the communications between them, which is time-consuming
and increases development complexity. To address this issue, a web platform was developed that, through
template-based dynamic code generation, facilitates the creation and configuration of microservices
architectures via an intuitive graphical interface. Through a visual process, users can select and connect
generic microservices, structuring their architectures in a personalized way that suits their requirements.
The interaction is straightforward: developers drag and drop elements onto a canvas and visually establish
the connections between them. Upon completion, they obtain the generated code, reducing the development
of a fully functional distributed system to just a few clicks.

Keywords: Microservices; Web Platform; Code Generation; Distributed Architecture.

RESUMEN

Con la creciente adopción del paradigma de microservicios, se han obtenido múltiples beneficios en el
desarrollo de software. Aun así, esto no quita que la mencionada metodología también presente ciertos
inconvenientes. Se conoció, mediante múltiples técnicas de recolección de datos, que uno de ellos es la
repetición innecesaria en el desarrollo de componentes comunes en sistemas genéricos. Los desarrolladores
se ven obligados a recrear estos componentes en múltiples ocasiones en sus diferentes sistemas y, además,
deben configurar manualmente las comunicaciones entre ellos, lo que consume tiempo y aumenta la
complejidad del desarrollo. En respuesta a esta problemática, se desarrolló una plataforma web que,
mediante la generación dinámica de código basada en plantillas, facilita la creación y configuración de
arquitecturas de microservicios mediante una interfaz gráfica intuitiva. A través de un proceso visual, se
les permite a los usuarios seleccionar y conectar microservicios genéricos, estructurando sus arquitecturas
de manera personalizada y adecuada a sus requerimientos. La interacción es sencilla: los desarrolladores
arrastran y sueltan los elementos sobre un lienzo y establecen visualmente las conexiones entre ellos. Al
finalizar, obtienen el código generado, reduciendo a unos cuantos clics el desarrollo de un sistema distribuido
completamente funcional.

Palabras clave: Microservicios; Plataforma Web; Generación de Código; Arquitectura Distribuida.

© 2024; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original
sea correctamente citada

1Universidad Siglo 21, Licenciatura en Informática, S.C de Bariloche. Argentina.

Cite as: Darquier T, Alejandro Virgolini P. Low-Code Platform for Visual Creation and Automatic Generation of Microservice Architectures.
EthAIca. 2024; 3:104. https://doi.org/10.56294/ai2024104

Submitted: 03-06-2023 Revised: 10-09-2023 Accepted: 30-12-2023 Published: 01-01-2024

Editor: PhD. Rubén González Vallejo

https://doi.org/10.56294/ai2024104
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/ai2024104
https://orcid.org/0000-0002-9697-6942

https://doi.org/10.56294/ai2024104

INTRODUCTION
This project consisted of a web platform aimed at software developers that, through a graphical interface,

allows them to create customized microservices with generic functionalities and, by configuring their
interrelationships, obtain functional architectures with minimal time investment.(1,2,3,4,5)

The adoption of microservice architectures for cloud software development by large companies such as
eBay, Amazon, and Netflix drove a massive trend in the industry.(6,7,8,9,10)

This change brought multiple benefits in terms of scalability, maintenance, and code encapsulation.(11,12,13,14,15)
However, it also resulted in a notable increase in complexity during development compared to a monolithic
solution, which implied a greater requirement for human capital, especially in the coding, testing, and module
integration phases.(1,2,16,17,18,19)

In turn, the low-code movement, which emerged in the last decade, allowed many organizations to benefit
from its usefulness. Gartner, for example, estimates that by the end of this year, more than 65 % of developments
will come from this medium.(3,20,21,22)

Because both the origin of microservice architecture and the low-code movement are relatively recent,
there are not many combinations between these topics.(23,24,25,26,27) However, the recent appearance of multiple
academic articles on this subject,(28,29,30,31) indicates a growing interest in exploring how the integration of low-
code approaches with microservice architectures can optimize software development.(32,33,34,35)

A clear example of this, and somewhat related to the present project, is the idea of a specific language for
microservices as a step towards the integration of low-code platforms, proposed by Said et al.(4)

How can we facilitate the design, configuration, and integration of microservice architectures using a low-
code approach, reducing complexity and development time without compromising software quality?

Objective
To develop and implement a low-code system that makes it easier for developers to design, configure, and

integrate microservice architectures efficiently using visual interfaces and reusable components, optimizing
time and reducing complexity compared to traditional approaches, ensuring quality through prior validation.

METHOD
Methodological Tools

During the development of this system, the guidelines established by the agile Scrum methodology were
followed, a framework that facilitates collaboration between teams to deliver products iteratively and
incrementally, allowing for rapid adaptation to changes and encouraging continuous improvement.(5)

In this way, at the end of each Sprint, functional portions of code were obtained, even though the complete
system was not developed, learning in each iteration and applying the knowledge in the next one. Thus, the
product benefited from the aforementioned characteristics, even allowing for a change in technologies, based
on the knowledge obtained during the development process without any repercussions.

Development Tools
Multiple technologies were used in the development of the project, which will be explained and justified

below, organized into four groups according to their specific activity: front-end tools, those intended for the
back-end for basic logical authentication and exchange with the front-end embedded in the gateway, back-end
technologies for automatic code generation, and finally, technologies used to facilitate system deployment and
scalability.

The tools used in the development of the front-end include the now standard set of JavaScript, HTML5, and
CSS, allowing for the creation of a complete visual appearance with high compatibility, as well as correct and
adaptable communication logic with the back-end. In turn, these tools were enhanced with Bootstrap, which,
with the help of its pre-designed components, alleviated the workload related to aesthetic design, allowing
multiple functionalities to be managed within the same page without neglecting this aspect. In this way, and
with the help of Thymeleaf, the front-end was coupled to the API Gateway to avoid unnecessary complexities.

The back-end was developed mostly in Java 17, using the Spring framework and its well-known libraries for
correct, clean, and efficient communication between services, mostly using the REST architecture style. Security
was managed by the OpenID Connect protocol and implemented using OAuth2 based on the service offered by
Okta, a standard that allows websites or applications to access resources hosted on other applications, on
behalf of and with prior permission from the user. Aspects requiring relational data persistence were provided
by a PostgreSQL database instance, chosen for its open source environment, as well as its remarkable flexibility,
data integrity, and scalability. In addition, asynchronous communications were handled for sending notifications
using Apache Kafka.

The logic related to dynamic code generation was semantically managed using RDF, which allowed the
combinations and decisions made by the user on the front-end canvas to be specified correctly and in a structured

 EthAIca. 2024; 3:104 2

ISSN: 3072-7952

https://doi.org/10.56294/ai2024104

manner, so that they could be sent to the back-end, queried using the SPARQL query language, and managed
using Apache Jena in Java services. To complete the process and generate the code specified and requested by
the user, we decided to use Apache Velocity, due to its high capacity for the task required, and MinIO for storing
and downloading the resulting files, thus avoiding dependence on specific cloud storage solutions.

Finally, the deployment and scalability of the system was managed using Docker, powered by Kubernetes. In
this way, as with other decisions outlined above, dependence on cloud solutions is reduced, giving the system
greater versatility and independent deployment capabilities.

Data Collection
To properly understand the problem to be addressed, we began with an analysis of academic bibliographic

sources. This approach allowed us to identify the main challenges in the development of distributed architectures,
as well as the associated costs.

Another data collection method used was social media analysis. Due to the public nature of the project, this
methodology proved highly enriching thanks to platforms such as Twitter, Reddit, and Medium, where software
developers share and discuss ideas and experiences on topics and situations in the field of computing.

This resulted in two clearly antagonistic approaches, thus justifying the choice of techniques presented.
These approaches are divided into strictly theoretical ones, based on academic documents, and, at the other
extreme, those based on social networks, which draw on the daily experiences of developers, who, after all,
are the ones affected by the problem.

Project Planning
For ease of understanding, the planning will first be presented separately, followed by the Gantt chart used

to organize the objectives of this Final Graduation Project.
Next, the tasks specified are presented together with the corresponding dates, followed by the aforementioned

Gantt chart.

Figure 1. Development Plan

 3 Darquier T, et al

https://doi.org/10.56294/ai2024104 ISSN: 3072-7952

https://doi.org/10.56294/ai2024104

https://doi.org/10.56294/ai2024104

Figure 2. Gantt chart

RESULTS
Survey
Structural Survey

Given that the project developed was a web platform aimed at software developers, both employees and
freelancers, it is not possible to establish a specific location, as this aspect depends on each individual user
who accesses the platform.

However, using the data collection methods specified above, it has been identified that most developers use
their own or their employer’s laptops and, to a lesser extent, desktop computers to carry out their professional
tasks in the IT field.

Functional Survey
Hierarchical Structure

Below is a generic organizational chart of a small or medium-sized software development company, given
the nature of the users targeted by the project.

The sectors covered by the developed platform are colored.

Figure 3. Organizational Chart of a Software Development Company

 EthAIca. 2024; 3:104 4

ISSN: 3072-7952

https://doi.org/10.56294/ai2024104

Functions of the Areas
Software Quality: responsible for ensuring that the software meets the previously specified requirements

and that it is free of errors. It also implements tests and continuously monitors product quality throughout the
development life cycle.

Software Architecture: aims to define the overall structure of the system, including technologies, design
patterns, and interactions between the different services that make up the final product. It also focuses on
ensuring scalability and efficiency in the software.

Implementation Team: develops, implements, and maintains the software product. Performs the task of
writing code, fixing bugs, and participating in the creation of new features indicated by design requirements
and specifications.

Project Management: establishes the resources needed to carry out the project and supervises its execution
and development, while assigning the corresponding tasks and defining their deadlines.

Relevant Processes
Process name: Software Quality Control.
Roles: Software Quality, Implementation Team, Software Architecture, Project Management.
Steps: the Software Quality department establishes and documents the quality standards and criteria that

software developments must meet, in coordination with the Software Architecture department to ensure
technical and design alignment.

The Software Quality team then develops a detailed test plan, which is shared with the Implementation
Team to ensure that all functionalities are covered and tested through the specified tests.

Finally, the Software Quality team performs the tests and evaluates the results to provide feedback to the
Implementation Team, if necessary. Otherwise, Project Management receives the product and is responsible for
its final release.

Process name: Software Architecture Design
Roles: Software Architecture, Software Quality, Project Management.
Steps: Project Management works to understand and document the different requirements of the project in

question.
Once the requirements have been defined, the Software Architecture Department designs and documents

the architecture in its entirety, including design patterns, frameworks, and technologies. Once this has been
done, the results are communicated to the Quality Team.

The Quality Department verifies the quality standards of the developed architecture, inviting adjustments
to be made if necessary.

Process name: Software Development.
Roles: Implementation Team, Project Management, Software Architecture, Software Quality.
Steps: Project Management distributes tasks and assigns resources to the Implementation Team according to

the schedule and priorities assigned to each project task.
The Implementation Team develops the functionalities according to the architectural design and detailed

specifications provided by the Software Architecture department, establishing constant communication to
ensure understanding and compliance with the guidelines.

Before sending the developed modules to Software Quality, the Implementation Team performs internal
tests to detect and correct errors. Once resolved, the complete modules are sent to the aforementioned
department, which will proceed with formal testing.

Any defects identified by the Quality Team are reported in a test report to the Implementation Team,
who make the necessary corrections. This step is a cycle that ends when the specified quality standards are
considered to have been met.

Documentation Survey
The following documents are surveyed:

•	 Quality Standards Specification: document describing the quality criteria and standards that
software developments must meet as defined by the Software Quality team.

•	 Test Plan: document detailing the test plan, including test types, test cases, and assigned resources.
This plan is developed by the Software Quality team.

•	 Requirements Survey: document listing the requirements gathered by the Software Architecture
team in collaboration with Project Management. It is the basis for the design of the software architecture.

•	 Architecture Documentation: document that describes in detail the software architecture,
including diagrams of components, interactions, and technologies used.

•	 Test Report: document generated by the Software Quality team summarizing the results of the
tests performed, including defects found and corrective actions.

 5 Darquier T, et al

https://doi.org/10.56294/ai2024104 ISSN: 3072-7952

https://doi.org/10.56294/ai2024104

https://doi.org/10.56294/ai2024104

Business Process
The flowchart below shows the comprehensive process carried out when developing a software product.

Figure 4. Flowchart referring to Product Development

Diagnosis and Proposal

Table 1. Diagnosis of the Software Quality Control Process

Process Name: Software Quality Control

Problems Causes

Dependence on manual testing. Presence of incorrectly decoupled components, making
it impossible to automate isolated component tests.
Poor documentation or lack thereof regarding the
composition and internal logic of the components
belonging to the software product.

Table 2. Process diagnosis: Software Architecture Design

Process Name: Software Architecture Design

Problems Causes

Difficulty adapting the
architecture to new project
requirements.

Changes in requirements can cause the original
architecture, or most of it, to become obsolete or
unable to meet emerging needs.
The presence of a monolithic or poorly modular
architecture limits flexibility to adapt specific parts of
the system without affecting others.
Lack of documentation of the or inaccessibility to it.

Lack of coordination in defining
the architecture between
teams.

The different departments are not always properly
aligned with architectural decisions.

Table 3. Software Development Process Diagnosis

Process Name: Software Development

Problems Causes

Overloading of the development
team due to lack of software
reuse.

No clear strategy or a centralized repository for
managing reusable components.

Late identification of errors in
the code before quality delivery.

Due to a lack of continuous testing resources, errors
are often detected late in the development cycle.

 EthAIca. 2024; 3:104 6

ISSN: 3072-7952

https://doi.org/10.56294/ai2024104

Proposal
The developed system improved efficiency and clarity in the design and development of software components.

It allows users to create highly decoupled component architectures and obtain the code for each component
with centralized, accessible, and clear documentation. This facilitates coordination between teams and ensures
technical alignment in all phases of the project. The platform incorporates automatic testing from the start of
component creation, significantly reducing dependence on manual testing and improving testing and quality
processes. In addition, the logical decoupling of components encourages reuse, accelerating development and
improving the adaptability of the resulting architectures.

Objectives, Limits, and Scope of the Prototype
Prototype Objectives

Develop a prototype system that allows the design of distributed architectures through the combination of
predefined components, automatically generating code tailored to user specifications for subsequent download.

Limitations
From the configuration and combination of predefined components to the automatic generation and

download of the corresponding code according to user specifications.

Scope
The processes included in the technological prototype are listed below:

•	 User registration and login.
•	 Architecture design through the combination of microservices.
•	 Microservice composition management.
•	 User guides.
•	 Dynamic component generation.
•	 Generation of technical documentation.
•	 Validation and testing of the generated architecture.
•	 Downloading the resulting architecture.

CONCLUSIONS
Based on the identification of a recurring pattern in the development of microservice applications, namely

that services with similar functionalities and logic are often programmed, a system was conceived, designed,
and implemented with the aim of offering an alternative that improves development productivity, providing
multiple benefits for the developer and, consequently, for the client and/or employer.

The project resulted in a web platform with a simple and intuitive interface, built with multiple technologies
and based on templates for dynamic code generation. This tool provided users with the ability to design
distributed microservice architectures based on common components by dragging and connecting pieces on an
interactive canvas. Thousands of lines of code can be generated easily, backed by adequate documentation. By
downloading the code resulting from their design onto the canvas, users obtain fully compatible components
with correct configurations and smooth, error-free communication between services.

Throughout the development of the system and the preparation of this document, I had the opportunity to
apply and deepen the knowledge I acquired during my career, learning in a practical way at each stage of the
process, from project conception to final documentation. This work also allowed me to face the real challenge
of building a system from scratch, combining different technologies in a coherent and functional way. In this
process, I not only consolidated what I had learned, but also understood the complexities involved in achieving
a robust and efficient solution, and the satisfaction that comes from seeing a final software product that was
initially nothing more than an idea.

BIBLIOGRAPHIC REFERENCES
1. Elgheriani NS, Ahmed NA. Microservices vs. monolithic architectures. Int J Appl Sci Technol. 2022;4:501-

14. doi:10.47832/2717-8234.12.47

2. Lopez BM, Garcia JL. Impacto de arquitecturas de microservicios en el desarrollo web [Tesis de maestría].
Madrid: Universidad Politécnica de Madrid; 2019. https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_
LOPEZ.pdf

3. Vincent P, Lijima K, Driver M, Wong J, Natis Y. Gartner magic quadrant for enterprise low-code application
platforms. Stamford: Gartner, Inc.; 2019. https://www.gartner.com/en/documents/3956079

 7 Darquier T, et al

https://doi.org/10.56294/ai2024104 ISSN: 3072-7952

https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_LOPEZ.pdf
https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_LOPEZ.pdf
https://www.gartner.com/en/documents/3956079
https://doi.org/10.56294/ai2024104

https://doi.org/10.56294/ai2024104

4. Said M, Ezzati A, Arezki S. Microservice-specific language, a step to the low-code platforms. In: Lecture
Notes in Networks and Systems. 2023;637:817-28. doi:10.1007/978-3-031-26384-2_72

5. Schwaber K, Sutherland J. Scrum: The art of doing twice the work in half the time. Houston: Crown
Business; 2010.

6. Amazon Web Services. What is Docker? 2023. https://aws.amazon.com/es/docker/

7. Amazon Web Services. What is Java? 2023. https://aws.amazon.com/es/what-is/java/

8. Apache Software Foundation. What is Velocity? 2020. https://velocity.apache.org/

9. Apache Software Foundation. About Jena. 2024. https://jena.apache.org/about_jena/about.html

10. Apache Software Foundation. Apache Kafka. 2024. https://kafka.apache.org/

11. Banco Central de la República Argentina (BCRA). Cotizaciones por fecha. 2024. http://www.bcra.gob.
ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp

12. Brown T, Smith L. The impact of Low-code platforms and intuitive interfaces on software development
efficiency. J Softw Innov. 2023;18:75-89.

13. Chaudhary HAA, Ahmed T. Integration of micro-services as components in modeling environments for low
code development. ISP RAS. 2021;33(4):19-30. doi:10.15514/ISPRAS-2021-33(4)-2

14. Consejo Profesional de Ciencias Informáticas de la Provincia de Córdoba (CPCIPC). Honorarios
Recomendados. 2024. https://cpcipc.org.ar/honorarios-recomendados/

15. Dhoke P, Lokulwar P. Evaluating the Impact of No-Code/Low-Code Backend Services on API Development
and Implementation: A Case Study Approach. In: 14th International Conference on Computing Communication
and Networking Technologies (ICCCNT); 2023 Jul 11-13; Chennai, India. Piscataway: IEEE; 2023. p. 1-5.
doi:10.1109/ICCCNT56998.2023.10306945

16. DigitalOcean. DigitalOcean Managed Kubernetes. 2024. https://www.digitalocean.com/products/
kubernetes

17. GitHub. About GitHub and Git. 2024. https://docs.github.com/es/get-started/start-your-journey/
about-github-and-git

18. IBM. Minio. 2021. https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio

19. IBM. PostgreSQL. 2024. https://www.ibm.com/mx-es/topics/postgresql

20. JetBrains. IntelliJ IDEA features. 2024. https://www.jetbrains.com/es-es/idea/features/

21. Kubernetes. ¿Qué es Kubernetes? 2022. https://kubernetes.io/es/docs/concepts/overview/what-is-
kubernetes/

22. Lewis J, Fowler M. Microservices: a definition of this new architectural term. 2014. https://martinfowler.
com/articles/microservices.html

23. Misic B, Novkovic M, Ramac R, Mandic V. Do the microservices improve the agility of software development
teams? In: International Scientific Conference on Industrial Systems; 2017. 17:170-5.

24. Mozilla Developer Network. CSS. 2023. https://developer.mozilla.org/es/docs/Glossary/CSS

25. Mozilla Developer Network. HTML5. 2023. https://developer.mozilla.org/es/docs/Glossary/HTML5

26. Mozilla Developer Network. What is JavaScript? 2024. https://developer.mozilla.org/es/docs/Learn/
JavaScript/First_steps/What_is_JavaScript

 EthAIca. 2024; 3:104 8

ISSN: 3072-7952

https://doi.org/10.56294/ai2024104
https://aws.amazon.com/es/docker/
https://aws.amazon.com/es/what-is/java/
https://velocity.apache.org/
https://jena.apache.org/about_jena/about.html
https://kafka.apache.org/
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
https://cpcipc.org.ar/honorarios-recomendados/
https://www.digitalocean.com/products/kubernetes
https://www.digitalocean.com/products/kubernetes
https://docs.github.com/es/get-started/start-your-journey/about-github-and-git
https://docs.github.com/es/get-started/start-your-journey/about-github-and-git
https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio
https://www.ibm.com/mx-es/topics/postgresql
https://www.jetbrains.com/es-es/idea/features/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://developer.mozilla.org/es/docs/Glossary/CSS
https://developer.mozilla.org/es/docs/Glossary/HTML5
https://developer.mozilla.org/es/docs/Learn/JavaScript/First_steps/What_is_JavaScript
https://developer.mozilla.org/es/docs/Learn/JavaScript/First_steps/What_is_JavaScript

27. Newman S. Building microservices: Designing fine-grained systems. Newton: O’Reilly Media; 2015.

28. Postman. What is Postman? 2024. https://www.postman.com/product/what-is-postman/

29. Richardson C. Microservices patterns: With examples in Java. New York: Manning Publications; 2019.

30. Rock Content. What is Bootstrap? 2020. https://rockcontent.com/es/blog/bootstrap/

31. Spring. Spring Framework. 2024. https://spring.io/projects/spring-framework

32. The Thymeleaf Team. Thymeleaf. 2024. https://www.thymeleaf.org/

33. Trello. Trello Tour. 2023. https://trello.com/es/tour

34. World Wide Web Consortium. RDF 1.1 Concepts and Abstract Syntax. 2014. https://www.w3.org/TR/
rdf11-concepts/

35. World Wide Web Consortium. SPARQL 1.1 Query Language. 2013. https://www.w3.org/TR/sparql11-
query/

FINANCING
None

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Tomás Darquier, Pablo Alejandro Virgolini.
Data curation: Tomás Darquier, Pablo Alejandro Virgolini.
Formal analysis: Tomás Darquier, Pablo Alejandro Virgolini.
Research: Tomás Darquier, Pablo Alejandro Virgolini.
Methodology: Tomás Darquier, Pablo Alejandro Virgolini.
Project management: Tomás Darquier, Pablo Alejandro Virgolini.
Resources: Tomás Darquier, Pablo Alejandro Virgolini.
Software: Tomás Darquier, Pablo Alejandro Virgolini.
Supervision: Tomás Darquier, Pablo Alejandro Virgolini.
Validation: Tomás Darquier, Pablo Alejandro Virgolini.
Visualization: Tomás Darquier, Pablo Alejandro Virgolini.
Writing – original draft: Tomás Darquier, Pablo Alejandro Virgolini.
Writing – review and editing: Tomás Darquier, Pablo Alejandro Virgolini.

 9 Darquier T, et al

https://doi.org/10.56294/ai2024104 ISSN: 3072-7952

https://www.postman.com/product/what-is-postman/
https://rockcontent.com/es/blog/bootstrap/
https://spring.io/projects/spring-framework
https://www.thymeleaf.org/
https://trello.com/es/tour
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.56294/ai2024104

	Marcador 1
	_GoBack

