
Prototipo y Validación de una Plataforma Low-Code para Microservicios con
Generación Dinámica de Código

EthAIca. 2024; 3:132
doi: 10.56294/ai2024132

ORIGINAL

Prototyping and Validation of a Low-Code Platform for Dynamic Code Generation
in Microservices

Tomás Darquier1, Pablo Alejandro Virgolini1

ABSTRACT

Introduction: the project addressed the issue of developing microservice architectures, a practice increasingly
adopted in the software industry due to its benefits in terms of scalability and maintenance. However, its
implementation involves a high degree of technical complexity, especially in the design, integration, and
deployment stages. Given this scenario, the development of a low-code web platform was proposed to
facilitate the visual design of microservices, reducing development times and technical barriers.
Method: to carry out the proposal, the agile Scrum methodology was applied, allowing for iterative and
incremental construction of the system. The platform was developed with technologies such as Java and
Spring Framework in the backend, HTML, CSS, JavaScript, and Thymeleaf in the frontend, and PostgreSQL
as the database. Apache Kafka was incorporated for asynchronous communication, MinIO for storage, and
semantic technologies such as RDF and SPARQL managed by Apache Jena. Code generation was performed
with Apache Velocity, based on predefined templates.
Results: the system allowed users to design microservice architectures using a visual interface (canvas),
configure specific properties, and automatically generate source code. In addition, it incorporated validations
that ensured the consistency of the designs and offered mechanisms for authentication and export of the
generated code.
Conclusions: the platform achieved its goal of simplifying microservice development through a low-code
approach. Its usefulness as a support tool for developers was validated, reducing complexity and time spent
on repetitive technical tasks.

Keywords: Microservices; Low-Code; Code Generation; Distributed Architecture; Agile Development.

RESUMEN

Introducción: el proyecto abordó la problemática del desarrollo de arquitecturas de microservicios,
una práctica cada vez más adoptada en la industria del software por sus beneficios en escalabilidad y
mantenimiento. Sin embargo, su implementación implica una alta complejidad técnica, especialmente en
las etapas de diseño, integración y despliegue. Frente a este escenario, se planteó el desarrollo de una
plataforma web Low-code que facilitara el diseño visual de microservicios, reduciendo tiempos de desarrollo
y barreras técnicas.
Método: para llevar a cabo la propuesta, se aplicó la metodología ágil Scrum, permitiendo una construcción
iterativa e incremental del sistema. La plataforma se desarrolló con tecnologías como Java y Spring
Framework en el backend, HTML, CSS, JavaScript y Thymeleaf en el frontend, y PostgreSQL como base
de datos. Se incorporaron Apache Kafka para comunicación asincrónica, MinIO para almacenamiento, y
tecnologías semánticas como RDF y SPARQL gestionadas por Apache Jena. La generación de código se realizó
con Apache Velocity, en base a plantillas predefinidas.

© 2024; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original
sea correctamente citada

1Universidad Siglo 21, Licenciatura en Informática, S.C de Bariloche. Argentina.

Cite as: Darquier T, Virgolini PA. Prototyping and Validation of a Low-Code Platform for Dynamic Code Generation in Microservices.
EthAIca. 2024; 3:132. https://doi.org/10.56294/ai2024132

Submitted: 16-08-2023 Revised: 04-01-2024 Accepted: 24-05-2024 Published: 25-05-2024

Editor: PhD. Rubén González Vallejo

https://doi.org/10.56294/ai2024132
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/ai2024132
https://orcid.org/0000-0002-9697-6942

https://doi.org/10.56294/ai2024132

Resultados: el sistema permitió a los usuarios diseñar arquitecturas de microservicios mediante una interfaz
visual (canvas), configurar propiedades específicas y generar código fuente automáticamente. Además,
incorporó validaciones que aseguraron la consistencia de los diseños y ofreció mecanismos de autenticación
y exportación del código generado.
Conclusiones: la plataforma logró cumplir su objetivo de simplificar el desarrollo de microservicios a través
de un enfoque Low-code. Se validó su utilidad como herramienta de apoyo para desarrolladores, reduciendo
la complejidad y el tiempo invertido en tareas técnicas repetitivas.

Palabras clave: Microservicios; Low-Code; Generación de Código; Arquitectura Distribuida; Desarrollo Ágil.

INTRODUCTION
The development of modern applications poses increasingly complex challenges, especially when distributed

architectures such as microservices are adopted.(1,2,3,4) This approach, although highly beneficial in terms of
scalability, modularity, and maintenance, introduces significant difficulties during the design, implementation,
and integration of the various components.(5,6,7,8) Faced with this reality, this project proposed as a solution
the design and implementation of a low-code platform aimed at facilitating the creation of microservice
architectures in a visual, intuitive, and customizable way, targeting software developers in particular.(9,10,11)

With the aim of achieving a functional and flexible product, the agile **Scrum** methodology was adopted,
which allowed for the incremental development of the system through iterations known as Sprints. This
strategy facilitated the incorporation of continuous improvements and rapid adaptation to technical obstacles,
technology changes, or design reorientations, without compromising the overall progress of the project.(12,13,14)

During its implementation, the system integrated a variety of technologies organized into different levels.
For the **front-end**, HTML5, CSS, and JavaScript were used, complemented by Bootstrap and Thymeleaf,
allowing for a smooth and adaptable user experience. On the **back end**, Java with Spring Framework was
used to build a robust and secure foundation, with authentication via OAuth2 provided by Okta. Tools such
as PostgreSQL for data management, Apache Kafka for asynchronous communication, and MinIO for storing
generated code were also incorporated.(15,16,17)

One of the most innovative features of the system was the automatic generation of code based on user
interaction with the canvas. This functionality was made possible by the use of semantic technologies such as
RDF and SPARQL, managed by Apache Jena and powered by Apache Velocity for the creation of customizable
files.(18,19,20)

Data collection for the design and validation of the project combined specialized academic sources and
technical discussion forums on social networks such as Reddit, Twitter, and Medium. This fusion of theory and
practice allowed for a better understanding of the problem and informed the technological decisions made.

In summary, the platform developed seeks to lower the technical barrier in the design of distributed systems,
promoting the use of reusable and configurable components, all within a low-code visual environment capable
of generating architectures ready for deployment with minimal manual intervention.

How can we facilitate the design, configuration, and integration of microservice architectures using a low-
code platform that reduces technical complexity and development time without compromising the quality of
the software generated?

Objective
To develop a low-code platform that allows developers to design, configure, and integrate microservice

architectures in a visual and intuitive way, using reusable components, automating code generation, and
optimizing development times with validations that ensure system quality.

METHOD
Methodological Design
Methodological Tools

During the development of this system, the guidelines established by the agile Scrum methodology were
followed, a framework that facilitates collaboration between teams to deliver products in an iterative and
incremental manner, allowing for rapid adaptation to changes and encouraging continuous improvement.

In this way, at the end of each Sprint, functional portions of code were obtained, even though the complete
system was not developed, learning from each iteration and applying the knowledge in the next one. Thus, the
product benefited from the aforementioned agile characteristics, even allowing for a change in technologies
based on the knowledge obtained during the development process without any repercussions.

 EthAIca. 2024; 3:132 2

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Development Tools
Multiple technologies were used in the development of the project, which will be explained and justified

below, organized into four groups according to their specific activity: front-end tools, those intended for the
back-end for basic logical authentication and exchange with the front-end embedded in the gateway, back-end
technologies for automatic code generation, and finally, technologies used to facilitate system deployment and
scalability.

The tools used in the development of the front-end include the now standard set of JavaScript, HTML5, and
CSS, allowing for the creation of a complete visual appearance with high compatibility, as well as correct and
adaptable communication logic with the back-end. In turn, these tools were enhanced with Bootstrap, which,
with the help of its pre-designed components, alleviated the workload related to aesthetic design, allowing
multiple functionalities to be managed within the same page without neglecting this aspect. In this way, and
with the help of Thymeleaf, the front-end was coupled to the API Gateway to avoid unnecessary complexities.

The back-end was developed mostly in Java 17, using the Spring framework and its well-known libraries
for correct, clean, and efficient communication between services, mostly using the REST architecture style.
Security was managed and implemented using OAuth2 based on the service offered by Okta, a standard that
allows websites or applications to access resources hosted in other applications on behalf of and with the prior
permission of the user. Aspects requiring relational data persistence were provided by a PostgreSQL database
instance, chosen for its open source environment, as well as its remarkable flexibility, data integrity, and
scalability. In addition, asynchronous communications were handled for sending notifications using Apache
Kafka.

The logic related to dynamic code generation was managed semantically using RDF, which allowed the
combinations and decisions made by the user on the front-end canvas to be specified correctly and in a structured
manner, so that they could be sent to the back-end, queried using the SPARQL query language, and managed by
Apache Jena in the Java services. To complete the process and generate the code specified and requested by
the user, we decided to use Apache Velocity, due to its high capacity for the task required, and MinIO for storing
and downloading the resulting files, thus avoiding dependence on specific cloud storage solutions.

Finally, the deployment and scalability of the system was managed using Docker, powered by Kubernetes. In
this way, as with other decisions outlined above, dependence on cloud solutions is reduced, giving the system
greater versatility and independent deployment capabilities.

Data Collection
To properly understand the problem to be addressed, we began by analyzing academic bibliographic sources.

This approach allowed us to identify the main challenges in the development of distributed architectures, as
well as the associated costs.

Another data collection method used was social media analysis. Due to the public nature of the project, this
methodology proved highly enriching thanks to platforms such as Twitter, Reddit, and Medium, where software
developers share and discuss ideas and experiences on topics and situations in the field of computing.

This resulted in two clearly contrasting approaches, thus justifying the choice of techniques presented.
These approaches are divided into strictly theoretical ones, based on academic documents, and, at the other
extreme, those based on social networks, which draw on the daily experiences of developers, who, at the end
of the day, are the ones affected by the problem.

Project Planning
For ease of understanding, the planning will first be presented separately, followed by the Gantt chart used

to organize the objectives of this Final Graduation Project.
Next, the tasks specified are presented together with the corresponding dates, followed by the aforementioned

Gantt chart.

 3 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Figure 1. Development Plan

Figure 2. Gantt chart

RESULTS
System Description
Product Backlog

The Product Backlog for the prototype to be developed is presented below. It should be noted that the user
stories shown correspond only to the basic functionalities necessary to demonstrate the purpose of the system.
For this reason, only customizable e-commerce components are presented, as this allows the functionalities
related to the combination and customization of compatible components within the application canvas to be
demonstrated.

 EthAIca. 2024; 3:132 4

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Table 1. Product Backlog

ID User Story Priority Story Points Dependencies

HU-001 Registration on the platform via Google Registration 5 -

HU-002 Log in via Google Sign up 2 HU-001

HU-003 Log out Med 2 HU-002

HU-004 Drag-and-drop visual design Media 5 -

HU-005 User service template High 5 -

HU-006 User service Registration 2 HU-005

HU-007 Product catalog service template High 5 -

HU-008 Product catalog service Registration 3 HU-007

HU-009 Shopping cart service template Sign up 5 -

HU-010 Shopping cart service Sign up 3 HU-009

HU-011 Order service template High 5 -

HU-012 Order service Registration 3 HU-011

HU-013 Shipping service template Registration 5 -

HU-014 Shipping service Medium 3 HU-013

HU-015 Notification service template High 8 -

HU-016 Notification service Medium 3 HU-015

HU-017 Interact with available components Medium 5 HU-006

HU-018 Component compatibility Medium 5 HU-017

HU-019 Remove components from the design Low 3 HU-018

HU-020 Select persistence in components Low 3 HU-016

HU-021 Configure endpoints in components Media 3 HU-016

HU-022 Select communication methodology Media 8 HU-016

HU-023 Specify JWT security High 3 HU-016

HU-024 Specify global configuration Medium 5 HU-016

HU-025 Specify API Gateway Medium 8 HU-016

HU-026 JSON to RDF translation High 5 HU-025

HU-027 ZIP of the resulting architecture Low 8 HU-026

HU-028 Dynamic generation process status Low 5 HU-027

HU-029 Access ZIP files Download 3 HU-027

HU-030 Component Dockerfiles High 3 HU-026

HU-031 Pending tasks guide Low 5 HU-025

HU-032 Component documentation Media 5 HU-025

HU-033 Platform user guide Media 5 HU-032

User stories

Table 2. HU-001 Registration on the platform via Google

ID HU-001 Name Registration on the platform via Google

Description As a user, I want to register on the system using my Google account so that I
can create my profile.

Criteria for Accept Given an existing Google user, when they decide to to register, the system
must redirect them to a tab to provide the necessary permissions, allowing
registration and informing the user once the action is complete.
Given a Google user previously registered through their account on the
platform, when they are prompted to register, the system must inform them
that an account already exists with that user, inviting them to log in through a
hyperlink to the corresponding section.

Priority High Estimated history points 5

 5 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Table 3. HU002 Log in via Google

ID HU-002 Name Log in via Google

Description As a user, I want to log in to the system using my Google account to access the
platform and my previous architectures.

Acceptance Criteria Given a user who is already registered with their Google account, when they
log in using that account, the system should grant access and redirect them to
the platform canvas.
Given a user who is not registered with their Google account, when they
attempt to log in using the unregistered account, the system must inform
them that they are not registered, inviting them to do so via a hyperlink to the
corresponding section.

Priority High Estimated story points 2

Table 4. HU-003 Close user session

ID HU-003 Name Log out user

Description As a user, I want to log out of the system using my Google account to prevent
unwanted access to my profile.

Acceptance Criteria Given a user logged into the system using valid credentials, when they decide
to log out, the system must revoke the temporary credentials that allow access
to the current session.

Priority Medium Estimated history points 2

Table 5. HU-004 Drag-and-drop visual design

ID HU-004 Name Drag-and-drop visual design

Description As a user, I want to drag components onto the canvas so that I can design an
architecture visually.

Acceptance Criteria Given a logged-in user, when the user presses and drags the visual representation
of a component onto the canvas, the system must move it to the area where
the user drops the element.

Priority Medium Estimated story points 5

Table 6. HU-005 User service template

ID HU-005 Name User Service Template

Description As a user, I want the system to use a predefined template for the automatic
creation of user services, so that all the components necessary to manage
users and permissions without manual intervention.

Acceptance Criteria Given a user who has logged into the platform, when they generate an
architecture that contains “User Service” within the design canvas, the system
must automatically associate the service with a predefined template for user
management.
Given a user who has logged into the platform, when they combine a certain
service compatible with “User Service,” the system must adapt the code
generation accordingly for proper interaction.

Priority High Estimated story points 5

Table 7. HU-006 User services

ID HU-006 Name User service

Description As a user, I want to have a user management service to incorporate into my
architecture, so that I can manage their information and permissions.

Acceptance Criteria Given that a user has logged into the platform, when dragging the “Users”
visual component to the design canvas, the system must automatically
associate the order service to the predefined code template.

Priority High Estimated story points 3

 EthAIca. 2024; 3:132 6

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Table 8. HU-007 Product catalog service template

ID HU-007 Name Product catalog service template

Description As a user, I want the system to use a predefined template for the automatic
creation of a product catalog service so that I can display my current inventory.

Acceptance Criteria Given a user who has logged into the platform, when they generate an
architecture that contains “Product Catalog Service” within the design
canvas, the system must automatically associate the service with a predefined
template for user management.
Given a user who has logged into the platform, when they combine a certain
service compatible with “Product Catalog Service,” the system must adapt the
code generation accordingly for proper interaction.

Priority High Estimated story points 5

Table 9. HU-008 Product catalog service

ID HU-008 Name Product catalog service

Description As a user, I want to have a product catalog service to incorporate into my
architecture so that I can display my current stock to the public.

Acceptance Criteria Given that a user has logged into the platform, when they drag the “Product
Catalog” visual component onto the design canvas, the system must
automatically associate the order service with the code.

Priority High Estimated story points 3

Table 10. HU-009 Shopping cart service template

ID HU-009 Name Shopping cart service template

Description As a user, I want the system to use a predefined template for the automatic
creation of a shopping cart service, so that users can make multiple product
purchases.

Acceptance Criteria Given a user who has logged into the platform, when they generate an
architecture that contains “Shopping Cart Service” within the design canvas,
the system must automatically associate the service with a predefined
template for user management.
Given a user who has logged into the platform, when they combine a certain
service compatible with “Shopping Cart Service,” the system must adapt the
code generation code generation accordingly for proper interaction.

Priority High Estimated story points 5

Table 11. HU-010 Shopping cart service

ID HU-010 Name Shopping cart service

Description As a user, I want to have a shopping cart service to incorporate into my
architecture so that users of my system can purchase multiple items
simultaneously.

Acceptance Criteria Given that a user has logged into the platform, when they drag the “Shopping
Cart” visual component onto the design canvas, the system must automatically
associate the order service with the code.

Priority High Estimated story points 3

Table 12. HU-011 Order service template

ID HU-011 Name Order Service Template

Description As a user, I want the system to use a predefined template for the automatic
creation of an order service to manage the order issuance and administration
process.

Acceptance Criteria Given a user who has logged into the platform, when they generate an
architecture that contains “Order Service” within the design canvas, the
system must automatically associate the service with a predefined template
for user management. Given a user who has logged into the platform, when
they combine a certain service compatible with “Order Service,” the system
must adapt the code generation accordingly for proper interaction.

Priority High Estimated story points 5

 7 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Table 13. HU-012 Order service

ID HU-012 Name Order service

Description As a user, I want to have a service capable of managing orders to incorporate
into my architecture, to handle orders issued within the system and act
accordingly.

Acceptance Criteria Since a user is logged into the platform, when they drag the “Orders” visual
component to the design canvas, the system must automatically associate the
order service to the predefined code template.

Priority High Estimated story points 3

Table 14. HU-013 Shipping service template

ID HU-013 Name Shipping Service Template

Description As a user, I want the system to use a predefined template for the automatic
creation of a shipping service so that I can manage the status of shipments.

Acceptance Criteria Given a user who is logged into the platform, when they generate an
architecture that contains “Shipping Service” within the design canvas, the
system must automatically associate the service with a predefined template
for user management.

Given a user who has logged into the platform, when they combine a certain
service compatible with “Shipping Service,” the system must adapt the code
generation form accordingly for proper interaction.

Priority High Estimated story points 5

Table 15. HU-014 Shipping service

ID HU-014 Name Shipping service

Description As a user, I want to have a service capable of managing the status of my
system’s shipments to incorporate into my architecture, so that I can track and
update the status of shipments.

Acceptance Criteria Since a user is logged into the platform, when they drag the “Shipments” visual
component to the design canvas, the system must automatically associate the
order service to the predefined code template.

Priority Medium Estimated story points 3

Table 16. HU-015 Notification service template

ID HU-015 Name Notification Service Template

Description As a user, I want the system to use a predefined template for the automatic
creation of a notification service, so that it can send alerts and messages to
users.

Acceptance Criteria Given a user who is logged into the platform, when they generate an
architecture that contains “Notification Service” within the design canvas, the
system must automatically associate the service with a predefined template
for user management.
Given a user who has logged into the platform, when they combine a certain
service compatible with “Notification Service,” the system must adapt the
code generation code accordingly for proper interaction.

Priority High Estimated story points 8

Table 17. HU-016 Notification service

ID HU-016 Name Notification service

Description As a user, I want to have a notification service to incorporate into my
architecture, to send messages and alerts to system users about important
events.

Acceptance Criteria Given that a user has logged into the platform, when they drag the
“Notifications” visual component onto the design canvas, the system must
automatically associate the order service to the predefined code template.

Priority Medium Estimated story points 3

 EthAIca. 2024; 3:132 8

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Table 18. HU-017 View available components
ID HU-017 Name Interact with available components
Description As a user, I want to view the available components so that I can select and

combine them on the canvas according to my needs.
Acceptance Criteria Given a user who has logged into the platform, when they place a component

on the canvas and want to join it with another compatible component, the
system must create a graphical link using a line to express the successful
relationship.

Given a user who has logged into the platform, when they place a component
on the canvas and want to join it with another incompatible component, the
system must display a pop-up indicating that the combination is not legal,
inviting the user to review the platform documentation.

Priority Medium Estimated story points 5

Table 19. HU-018 Component compatibility
ID HU-018 Name Component compatibility
Description As a user, I want to see which components are compatible with the selected

component is compatible with, in order to combine them correctly on the canvas.
Acceptance Criteria Given a user who has logged into the platform, when they interact with the “+”

button attached to the component on the canvas, the system should highlight
the “+” buttons of the other compatible components on the canvas.
Given a user who has logged into the platform, when they highlight the
compatibilities of a component and tap the canvas again, the system must
uncheck the previously highlighted connections.

Priority Medium Estimated story points 5

Table 20. HU-019 Remove design components
ID HU-019 Name Remove design components
Description As a user, I want to delete a component from the canvas to remove it from the

designed architecture.
Acceptance Criteria Given a user who is logged into the platform, when they place the mouse over

a component displayed on the canvas, the system must display an “X” icon
referring to the option to delete the component. Given a user who has logged
into the platform, when they interact with the “X” button of a component on
the canvas, the system must ask if they want to delete the component. If so, it
executes the action, and if not, it closes the pop-up window no, it removes the
query pop-up.

Priority Low Estimated story points 3

Table 21. HU-020 Select persistence in components
ID HU-020 Name Select persistence in components
Description As a user, I want to configure the database of a component so that I can choose

the one that best suits the requirements of my architecture.
Acceptance Criteria Given a user who has logged into the platform, when interacting with the

default database attached to the component within the canvas, the system
must display the alternative options available for the service, allowing the
default to be modified.

Priority Low Estimated story points 3

Table 22. HU-021 Configure endpoints in components
ID HU-021 Name Configure endpoints in components
Description As a user, I want to configure the URL of the endpoints of a component to suit

my infrastructure requirements.
Acceptance Criteria Given a user who is logged into the platform, when they hover the mouse over

a component on the canvas, the system must display a button representing a
“nut” to access a pop-up with the service settings.
Given a user who has logged into the platform, when they interact with the
configuration button of a microservice, the system must present the option
to modify the prefix of the microservice endpoints, applying the changes by
clicking “accept.”

 9 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Given a user who is logged into the platform, when they enter an invalid string
as the endpoint prefix and press “accept,” the system should notify them that
no changes were made due to invalid characters, keeping the user in the pop-
up displaying the string prior to the illegal entry.

Priority Medium Estimated story points 3

Table 23. HU-022 Select communication methodology
ID HU-022 Name Select communication methodology

Description As a user, I want to select the communication methodology between two
components so that they adapt to the needs of my system.

Acceptance Criteria Given a user who has logged into the platform, when creating a connection
between two compatible components, the system must display a symbol in
the middle of the connection that, when interacted with, will display a list of
the connection types compatible between both microservices , allowing the
desired option to be selected.

Priority Medium Estimated story points 8

Table 24. HU-023 Specify JWT security

ID HU-023 Name Specify JWT security

Description As a user, I want to specify the use of JWT as a security measure so that the
security of the architecture meets my requirements.

Acceptance Criteria Given a user who has logged into the platform, when accessing the canvas,
the system must display a global option in the upper right corner to secure the
architecture using JWT, allowing it to be disabled or enable it.

High High Estimated story points 3

Table 25. HU-024 Specify global configuration

ID HU-024 Name Specify global configuration

Description As a user, I want to specify the use of a global configuration server so that the
architecture fits my requirements.

Acceptance Criteria Given a user who has logged into the platform, when accessing the canvas,
the system must display an option in the upper right corner, below “JWT,”
to manage all service configurations through a configuration server, allowing
disable or enable it.

Priority Medium Estimated story points 5

Table 26. HU-025 Specify API Gateway

ID HU-025 Name Specify API Gateway

Description As a user, I want to specify the generation of an API gateway so that components
can interact directly

Acceptance Criteria Given a user who has logged into the platform, when accessing the canvas, the
system must display an option in the upper right corner, under “Config Server,”
to manage all architecture interactions through an API gateway, allowing it to
be disabled or enabled.

Priority Medium Estimated story points 8

Table 27. HU-026 Translation from JSON to RDF

ID HU-026 Name Translation from JSON to RDF

Description As a user, I want the system to automatically convert data that specifies
the generated architecture from JSON format to RDF to ensure a structured
specification.

Acceptance Criteria Given a user who has logged into the platform, when requesting the processing
of the resulting architecture, the system must represent the information
using JSON, subsequently translating it into semantic RDF content to provide
structure and enable queries.

Priority High Estimated story points 5

 EthAIca. 2024; 3:132 10

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Table 28. HU-027 ZIP of the resulting architecture

ID HU-027 Name ZIP of the resulting architecture

Description As a user, I want to request a ZIP file from the canvas with the designed archi-
tecture to obtain the files that comprise it and thus configure it in my local
environment.

Acceptance Criteria Given a user who has logged into the platform, when configuring an architec-
ture and requesting its generation, the system must convert the generated
code into a ZIP file, informing the user when the process is complete and invit-
ing them to download it from their user profile user profile.

Low Low Estimated story points 8

Table 29. HU-028 Status of dynamic generation process

ID HU-028 Name Dynamic generation process status

Description As a user, I want to know the status of the dynamic generation of my architecture
in order to estimate when it will be completed.

Acceptance Criteria Given a user who has logged into the platform, when configuring an architecture
and requesting its generation, the system must display a pop-up indicating the
status of the process, showing the following statuses:
Creating the pom.xml
Generating the code
Compressing the architecture
Process completed

Priority Low Estimated story points 5

Table 30. HU-029 Access previous ZIP files

ID HU-029 Name Access ZIP files

Description As a user, I want to access my ZIP files generated so that I can download them
again

Acceptance Criteria Given a user who has logged into the platform, when selecting the profile
symbol in the upper right corner, the system should redirect the user to a
screen displaying their last 5 generated architectures, allowing them to be
downloaded with a simple click on the button attached to the right of each one.

Priority Low Estimated history points 3

Table 31. HU-030 Component Dockerfiles

ID HU-030 Name Component Dockerfiles

Description As a user, I want to have Dockerfiles associated with the components of the
architecture to facilitate their deployment.

Acceptance Criteria Given a user who has logged into the platform, when obtaining the zip file
resulting from an architecture, the system must include within that file an
individual Dockerfile for each component of the architecture, to allow for its
deployment and that of its persistence component.

Priority High Estimated story points 3

Table 32. HU-031 Guide to pending tasks

ID HU-031 Name Guide to pending tasks

Description As a user, I want to obtain a to-do guide (TO-TO’s) in the generated code to
adjust and customize the downloaded architecture.

Acceptance Criteria Given a user who has logged into the platform, when obtaining the zip file
resulting from an architecture, the system must include within that file a .txt
file explaining the TO-DO’s present in the code and their reason for existence.

Priority Low Estimated story points 5

 11 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Table 33. HU-032 Component documentation

ID HU-032 Name Component documentation

Description As a user, I want to access the component documentation to understand its
structure and detailed operation.

Acceptance Criteria Given a user who has logged into the platform, when they click on the
documentation section at the top of the screen, the system should redirect
them to a screen with a side menu where the available components are listed.

Given a user who has logged into the platform, when they click on a specific
component in the documentation, the system must display it, specifying its
functionality, compatibilities, and endpoints.

Priority Medium Estimated story points 5

Table 34. HU-033 Platform user guide

ID HU-033 Name Platform user guide

Description As a user, I would like to access a user guide for the platform to understand
how it works and get the most out of it.

Acceptance Criteria When a user who is logged into the platform clicks on the section referring
to the platform user guide at the top of the screen, the system should direct
them to the corresponding screen, where a brief user guide for the platform
is presented.

Priority Medium Estimated history points 5

Sprint Backlog
The following table shows the Backlog for the first Sprint of the prototype to be developed, with a set

duration of 14 days.

Table 35. Sprint Backlog

Sprint User Story Tasks Priority Estimated (days) Status

1 Registration on the
platform via Google (HU-
001)

Define and implement data
persistence methodology and
structure

High 1 Done

1 Code and integrate registration
and connection module with
Google OAUTH2

Registration 2 Done

1 Design graphical interface Medium 1 Done

1 Perform unit testing on the
developed module

High 1 Done

1 Log in via Google (HU-002) Encode and integrate login module Registration 1 Done

1 Design graphical interface Medium ½ Done

1 Perform unit testing on the
developed module

High ½ Done

1 Close user session (HU-003) Encode and integrate logout
module

Medium 1 Done

1 Design graphical interface Medium 1 Done

1 Perform unit testing on the
developed module

Medium 1 Done

1 User service template
(HU- 005)

Design layout and compatibility
for the
user service template

High 1 Completed

1 Encode user service template Register 2 Done

1 Perform unit testing on the
components generated as a result
of using the developed template

High 1 Done

 EthAIca. 2024; 3:132 12

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Data Structure
The project has four data structures that support its processes and interactions, providing the system with

everything from correct information persistence to a notable improvement in overall system efficiency and the
ability to send asynchronous notifications to users within the platform.

Below is the DER diagram of the PostgreSQL relational database, which handles user administration and
management and their corresponding identifiers, including those provided by the OAUTH2 identification server.

Figure 3. DER relational database for user management

The data dictionaries for the relational database just presented are shown below:

Table 36. Users table dictionary

Table: users

Field Length Data type Description

user_id 19 Numeric User identifier

oauth_provider 16 Alphabetic OAUTH provider

oauth_id 19 Numeric Identification number provided by OAUTH

email 254 Alphabetic Email provided by OAUTH provider

name 254 Alphabetical Name provided by OAUTH provider

created_at 19 Timestamp Time of account creation

Table 37. user_activity table dictionary

Table: user_activity

Field Length Data type Description

activity_id 19 Numeric Session identifier

user_id 19 Numeric User identifier

activity_type 254 Alphabetic Type of activity performed

ip_address 15 Numeric IPv4 address

created_at 19 Timestamp Time the activity was performed

During the design of the system, it was found that including temporary cache storage could provide a
temporary reduction in the system’s response to the user, taking advantage of previously performed processing.
For this reason, temporary storage was implemented with REDIS, which seeks to reduce calls to the Spring
Initializr API by analyzing previous calls in a short period of time in search of one that is similar to the one to
be made.

The following diagram illustrates the process mentioned above:

 13 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Figure 4. Explanation of cache system functionality

In this way, in many cases, valuable time consumed by a call to an external API is saved.
The simple data structure of the cache mentioned above is shown below:

Figure 5. Cache data structure for poms generation

The dictionary for the data structure presented is shown below

Table 38. Dictionary of data present in the cache

Field Length Data type Description

url_SHA256 64 Alphabetic SHA-256 hash of the URL used for the
request to the Spring Initializr API

pom_file 65535(max) Alphabetical Contents of the pom.xml file
resulting from the request

A data structure was also defined to store the architectures designed by users on the platform and their
corresponding automatically generated code. In this way, using MinIO, the system has a platform where it can
work dynamically with the code, allowing users to download a .zip file with the designed architecture. The
aforementioned data structure complies with the format of figure 6:

In addition, for proper functioning in asynchronous processes, the system required the inclusion of a
messaging system. In this case, Apache Kafka was chosen. This tool performs two crucial tasks for the system:

•	 Inform of the presence of a new architecture to be generated and provide its specification.
•	 Keeping the user updated on the generation process of the requested code, informing them of the

status of the final product.
•	 The topics used for the aforementioned functions are service-generation-request and service-

generation-status, respectively, which interact with the system services (figure 7).

 EthAIca. 2024; 3:132 14

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Figure 6. File structure for storing and generating code

Figure 7. Diagram explaining the asynchronous message system

As can be seen in the diagram, the service consists of a single broker, and service-generation-request has two
partitions, compared to service-generation-status, which only has one. This decision is based on the possibility
of parallel processing of user-generated requests provided by the presence of more than one partition, which
is not necessary in the case of code generation progress messages.

 15 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

The data model for each topic mentioned is presented below.
Service-generation-status:
Using the information contained in the topic described above, the system is able to keep the user informed

of the progress made in generating the code for the system they designed on the canvas.

Figure 8. Data structure of the topic ‘service-generation-status’

The dictionary for the data structure presented is shown below:

Table 39. Data dictionary for the ‘service-generation-status’ topic

Field Length Data type Description

status 32 Alphabetic Informative message about the dynamic code generation process

progress 1 Numeric Number range from 1 to 3, indicating the step in the process
where dynamic code generation is currently taking place.

timestamp 1 Alphabetic Time of activity status update

Service-generation-request: the information carried by this defined topic is critical to the functioning of the
system, since based on the JSON example below, the system asynchronously receives new tasks to be processed
and builds the necessary code requested by the user. It is important to note that JSON has many attributes that
may seem unnecessary for the prototype, as they do not allow customization, but this ensures that the system
is ready for further customization in the event of full development.

The dictionary for the data structure presented is shown below:

Table 40. Dictionary of the ‘service-generation-request’ topic

Field Data type Description

projectName Alphabetic Name of the general project

version Numeric Project version, 1,0 by default

services Alphabetical Contains and defines the components of the architecture

name Alphabetical Component name

type Alphabetical Component type, i.e., what the service is about

version Numeric Version of the template used

description Alphabetical Component description

endpoints Alphabetical Section referring to the component’s endpoints

path Alphabetical Base URL of the component

dependencies Alphabetical Component dependencies

connections Alphabetical Connections between components specified on the canvas

source Alphabetical Point A of the connection

target Alphabetical Connection point B

protocol Alphabetical Communication protocol

type Alphabet Methodology used for communication

databases Alphabetical Contains the persistence elements of the services

name Alphabetical Name of the persistence element

owner Alphabetical Service that interacts with the persistence element

type Alphabet Tool used

version Numeric Version of the tool used

infrastructure Alphabetical Contains configuration and infrastructure elements

name Alphabetical Name of the infrastructure component

 EthAIca. 2024; 3:132 16

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

type Alphabetic Infrastructure component type

port Numeric Infrastructure component port

security Alphabetic Contains the global security elements of the system

auth Alphabetical Specifies how authentication is performed in the system

type Alphabetic Authentication methodology

configurations Alphabetic Contains information for security customization

secretKey Alphabetical Secret key used to secure the system

Figure 9. Data structure of the ‘service-generation-request’ topic

 17 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Screen Interface Prototypes
When accessing the web platform, users are required to log in using their Google account.

Figure 10. Login screen

Once the user has been validated and/or registered in the system, they are sent to the platform’s home
page, where its core functionality, related to distributed systems design, is located.

Figure 11. Home screen

On the main screen, the user can drag the components of the architecture onto the canvas to begin designing
the system.

 EthAIca. 2024; 3:132 18

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Figure 12. Drag-and-drop functionality

The components placed on the canvas can, if compatible, be joined together to generate more complex
functionalities through their interaction.

Figure 13. Component joining functionality

To customize each component placed on the canvas, the user must click on the corresponding gear icon to
access the configuration menu.

 19 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Figure 14. Component configuration screen

Once the user has designed and configured a specific architecture to their liking, they can generate the
corresponding code by pressing the green button located in the lower right corner of the canvas, where they
will receive real-time progress on the dynamic code generation process.

Figure 15. Code generation process screen

To learn about the different components that can be used on the canvas, their composition, operation,
persistence methodology, and compatibilities, users can access the documentation section, where they will find
the information necessary to understand each available piece.

 EthAIca. 2024; 3:132 20

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Figure 16. Documentation screen

If users wish to understand how the platform works, there is a section called User Guide, where they can
access the aforementioned information.

Figure 17. User guide screen

When the system user generates architectures on the canvas, the last five are saved and can be downloaded
from the Profile section, which provides basic useful information about the architectures and a link to download
them.

 21 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Figure 18. User profile screen

Finally, to conclude their activity on the platform, users can log out by clicking the button in the upper right
corner after confirming that they wish to do so.

Figure 19. Logout screen

Architecture Diagram
The architecture diagram for the project discussed in this document is shown below. Due to the decisions

made, as can be seen in the diagram, a highly scalable and efficient system was achieved for the intended
purpose.

 EthAIca. 2024; 3:132 22

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Figure 20. Architecture diagram

Security
Access to the Application

As stated repeatedly throughout this document, the project manages users through OAuth2, specifically
through Google login, which is a very convenient alternative for an application such as the one developed, due
to its permission for access by the general public.

Although for backup, auditing, and resource management purposes, the project itself stores the information
of users registered on the platform, passwords are managed by Google, since it is through a user of the
aforementioned platform that the system grants access to the project. Therefore, users must comply with
Google’s requirements for creating their credentials. Below is a list of Google’s current requirements for
creating an email address under its domain and the corresponding password.

Requirements for creating an email address:
•	 It must follow the standard format for an email address, i.e., nombre@dominio.com. In this case,

the domain is @gmail.com.
•	 The username, i.e., the text before the ‘@’, must contain between 6 and 30 characters.
•	 Only characters from a-z and A-Z are allowed, as well as numbers 0-9 and special characters such

as the period (.), the underscore (_), and the hyphen (-).
•	 The email address must not be in use in Gmail. This means that each email address must be unique.

Requirements for specifying a password:
•	 The password must contain more than 8 characters.
•	 Although there is no related limitation, the use of lowercase letters, uppercase letters, numbers,

and special characters is recommended.
•	 It must not be included in Google’s list of common passwords.

In turn, Google stores user passwords using hash functions that convert the password into an irreversible
text string, as well as adding a random value called a ‘salt’ to make brute force attacks more difficult. It is also
worth noting that Google users can enable two-factor authentication, known as 2FA, which adds an extra layer
of security by requiring a second element to access the user account.

 23 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

With regard to the user roles outlined below, due to the nature of the project and the development of only
core functionalities for the prototype, the administrator user has no advantage or differential capacity. Even
so, it was added to the system in a “logical” manner, with a view to future updates that may provide features
requiring extra control within the application.

Profiles present in the application:
•	 Regular user: has access to all the features present in the technological prototype, i.e., the

specification, configuration, and download of services referenced to their user profile and the ability to
consult both the documentation present on the platform and the user guide.

•	 Administrator user: as explained above, the administrator user does not currently have any
different permissions from the common user, but is still present in the system in case of possible updates.

Information Backup Policy
In order to back up the information related to both the application code and the information produced as

a result of its use and execution, two copies of the application source code and three copies of the user data
are stored.

User data is initially stored on the hosting service where the database engine container volume is stored.
In this case, the cloud service provider is DigitalOcean. As a second backup, the system runs a process every
day at 00:00 (GMT-3) to keep a copy of the database content on the local server at the development offices.
Finally, in order to maximize user data integrity, a copy of the user data is stored weekly on an external hard
drive, which is stored in a confidential location in a building other than the local server and is known only to
the company’s management.

The application source code is handled and stored on GitHub, where developers work on it. In turn, as
mentioned above, functional versions are backed up and stored in two instances upon completion. First,
the code is stored manually on the company’s local server and then stored on an external hard drive kept
in a confidential location in a building other than the company’s offices and known only to the company’s
management.

The local server mentioned for both source code and user data backup is a NAS located in the development
offices, configured with RAID 10 to obtain a high level of redundancy and remarkable performance, ensuring
outstanding information availability even in the event of incidents and providing fast recovery of persistent
content.

DigitalOcean also takes availability into account and, in fact, this is one of the factors that influenced the
decision to run the system on its cloud services, since the platform boasts 99,99 % uptime for the products used
to deploy and run the developed project.(1)

Cost Analysis
Below is a breakdown of the estimated costs of the project in terms of the human resources required for

the development of the computer system. These were obtained from the website of the Professional Council of
Computer Sciences of the province of Córdoba on October 21, 2024.

Table 41. HR cost analysis

Role Fees Months Subtotal (AR$)

Senior Programmer Analyst $1 697 430,72 3 $5 092 292,16

Backend Developer $1 985 445,37 3 $5 956 335,93

Frontend Developer $1 883 828,08 2 $3 767 656,16

Application Testing Analyst $1 646 481,38 2 $3 292 962,76

Total Development $18 109 247

Having presented the figures relating to labor, we now present the operating costs considered necessary for
the proper deployment and operation of the project.

Table 42. Operating cost analysis

Resource Amount Source Subtotal AR$ Monthly AR$

* Kubernetes Basic Node
(DigitalOcean)
8 GB RAM
4 vCPU
160GB
storage

2 https://www.digitalocean.com/pricing - $94 464

 EthAIca. 2024; 3:132 24

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132
https://www.digitalocean.com/pricing

.com domain name 1 https://www.hostinger.com.ar/domains - $2144

NAS Drive
Linux OS
RAID 10 compatible
4 HDD capacity

1 https://www.compel.com.ar/storage/
storage/nas-drive-au-4b-25-35a335696.html

$816,85 -

3TB HDD NAS 4 https://www.compel.com.ar/storage/hdd-
internal/hdd-3t-sea-35-nas-ironwol-328858.
html

$636 -

Total Initial Cost $1 453 511

Total Fixed Costs $96 608

Note: * Original value in USD, converted to AR$ considering 1 USD equivalent to 948 AR$ based on the exchange rate
provided by the Central Bank of the Argentine Republic on October 21, 2024.(2)

Regarding the costs related to the software used for the project’s development, the decision was made to
use open source platforms, accessing free plans to save on licensing costs. Even so, these tools are presented
for informational purposes.

Table 43. Analysis of development tool costs

Tool Subtotal (AR$)

PostgreSQL $

Apache Kafka $

MinIO $0

Docker $0

Kubernetes $0

Spring Framework $0

Total Software Licenses $

To conclude the cost analysis, a summary of the costs is provided, excluding the salary values detailed
above.

Table 44. Summary of costs excluding HR

Human Capital Software and Licenses Infrastructure and Hardware Total

Initial Cost (AR$)* $18 109 247,01 $ $1 453 511 19 562 758,01

Monthly Fixed Cost (AR$)** $ $ $96 608 $96 608

Note: * Includes all costs related to the first three months of activity, i.e., until the development of the system is
complete, excluding its deployment.
** Includes the costs of maintaining the system once it has been developed and deployed in the cloud.

Risk Analysis
The risks that may arise during the course of the project are described and detailed below, divided into

different tables according to their cause. These tables show both the probability and impact of each risk, values
that will be used to determine their significance in the matrix presented below.

Technical Risks

Table 45. Technical Risks

ID Type Risk Probability Impact Cause

1 Technical The platform’s response time
does not meet expected
response standards

0,40 4 Inefficiencies in architecture
or lack of optimization in
communications

2 Technical Security vulnerability in
services that interact with
databases.

0,7 2 Lack of proper sanitization
and validation of user input

 25 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://www.hostinger.com.ar/domains
https://www.compel.com.ar/storage/storage/nas-drive-au-4b-25-35a335696.html
https://www.compel.com.ar/storage/storage/nas-drive-au-4b-25-35a335696.html
https://www.compel.com.ar/storage/hdd-internal/hdd-3t-sea-35-nas-ironwol-328858.html
https://www.compel.com.ar/storage/hdd-internal/hdd-3t-sea-35-nas-ironwol-328858.html
https://www.compel.com.ar/storage/hdd-internal/hdd-3t-sea-35-nas-ironwol-328858.html
https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

Table 46. Project risks

ID Type Risk Probability Impact Cause

3 Project Dependence on third-party APIs for
integration or creation of services that
are not available

0,80 3 Lack of control over the quality and
availability of services used in the
system

4 Project Difficulty in obtaining the technical
personnel necessary to carry out the
development of the system

0,3 3 Very specific subject matter due to
the ultimate goal of the system, which
focuses on distributed systems

5 Project Insufficient resources for project
development

0 4 Lack of investment in human and/or
technological resources technology

6 Project The field of research does not provide
useful information on which to base
the project.

0,60 2 The field of microservices research
may be incomplete due to its recent
inclusion.

Once the identified project risks have been exposed, we proceed with the aforementioned risk matrix in
order to weigh the probabilities of occurrence and their related impacts.

Figure 21. Risk Matrix

Based on the matrix presented, both the tables shown above and the one defined below, referring to the
quantitative analysis of risks, were developed.

Table 47. Quantitative risk analysis

Risk Probability of
Occurrence Impact Degree of

Exposure Percentage Cumulative
Percentage

Dependence on third-party APIs for
integration or creation of services
that are not available

0,8 3 2 25,40 25,40

Insufficient resources for project
development

0,45 4 1,8 19,06 44,46

The platform’s response time does
not meet the expected response
standards

0,40 4 1,60 16,93 61,39

Security vulnerability in services
that interact with databases.

0,70 2 1,40 14,81 76,2

The field of research does not
provide useful information on which
to base a comparison.

0,60 2 1,2 12,70 88,90

Difficulty in obtaining the technical
personnel necessary to carry out the
development of the system

0,35 3 1 11,10 100

Once the degree of risk exposure for each risk detected has been presented, it is time to use the Pareto
Principle to focus attention on the important and critical aspects, ignoring the more trivial ones. The
corresponding graph is shown below.
	

 EthAIca. 2024; 3:132 26

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

Figure 22. Pareto Principle of Risk Exposure

Once the most threatening risks have been identified using the Pareto Principle, specific contingency plans
have been developed to mitigate these threats. The details of these plans are presented below.

Table 48. Contingency Plans

Risk Contingency Plan

Dependence on third-party APIs for
integration or creation of services
that are unavailable

Develop minimum viable internal solutions to reduce
critical dependence on external APIs. Establish contracts
with key suppliers to ensure response times response times
and availability, and define monitoring mechanisms to
detect failures and act quickly.

Insufficient resources for project
development

Establish a flexible resource allocation plan from the outset,
allowing efforts to be redistributed according to project
priorities. Propose additional phases or adjustments to the
project scope to adapt to the available budget.

The platform’s response time
does not meet expected response
standards

Conduct a thorough review of the architecture and apply
specific optimizations in critical areas. Integrate real-time
monitoring solutions to detect performance issues and
adjust system capacity.

Security vulnerability in services
that interact with databases.

Implement additional layers of security, such as application-
level firewalls and encryption of sensitive data. Conduct
regular security-focused code reviews and apply immediate
patches for any vulnerabilities discovered.

CONCLUSIONS
This project demonstrated that combining microservice architectures with low-code approaches is not only

possible but also highly beneficial for reducing complexity in the design and development of distributed systems.
Through the implementation of a visual and intuitive platform, we were able to offer a solution capable of
significantly shortening development times, facilitating component integration, and reducing common errors
during manual coding.

One of the main achievements was the construction of a functional environment that allows developers to
drag, configure, and relate microservices visually, and then automatically generate the corresponding code.
This functionality, supported by technologies such as RDF, SPARQL, and Apache Velocity, is a significant advance
in software development automation, ensuring structural consistency without sacrificing flexibility.

The choice of modern, open source tools such as Java with Spring Framework, PostgreSQL, Apache Kafka,
MinIO, Docker, and Kubernetes was key to ensuring the scalability, portability, and robustness of the system. In
addition, secure authentication practices were implemented with OAuth2 (via Google), along with backup and
distribution mechanisms that ensure data integrity and availability.

On the methodological side, the use of Scrum as an agile framework allowed for iterative product evolution,
fostering continuous improvement and rapid response to technical obstacles or changes in requirements. This
dynamic was essential for adjusting details in real time, improving the functional design of the canvas, and

 27 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

https://doi.org/10.56294/ai2024132

adapting the code generation logic according to the results obtained in each sprint.
The collection of information through the analysis of scientific literature, complemented by observations

on social networks used by developers, provided a comprehensive view of the problem to be addressed. This
integration of theory and practice facilitated the validation of the real needs of the target user and guided the
design of key platform features.

In summary, the developed system fulfills the objective of facilitating the creation of microservice
architectures, providing a powerful, accessible, and adaptable tool. Although it is a functional prototype,
its structure and design anticipate future evolution with greater possibilities for customization, template
expansion, and compatibility with enterprise production environments. The path towards the democratization
of distributed development through low-code platforms is thus open and enhanced with this technological
proposal.

BIBLIOGRAPHIC REFERENCES
1.	 DigitalOcean. DigitalOcean Managed Kubernetes. 2024. https://www.digitalocean.com/products/

kubernetes

2.	 Banco Central de la República Argentina (BCRA). Cotizaciones por fecha. 2024. http://www.bcra.gob.ar/
PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp

3.	 Chaudhary HAA, Ahmed T. Integration of micro-services as components in modeling environments for low
code development. ISP RAS. 2021;33(4):19-30. doi:10.15514/ISPRAS-2021-33(4)-2

4.	 Dhoke P, Lokulwar P. Evaluating the Impact of No-Code/Low-Code Backend Services on API Development
and Implementation: A Case Study Approach. In: 14th International Conference on Computing Communication
and Networking Technologies (ICCCNT); 2023 Jul 11-13; Chennai, India. Piscataway: IEEE; 2023. p. 1-5.
doi:10.1109/ICCCNT56998.2023.10306945

5.	 Apache Software Foundation. Apache Kafka. 2024. https://kafka.apache.org/

6.	 IBM. Minio. 2021. https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio

7.	 JetBrains. IntelliJ IDEA features. 2024. https://www.jetbrains.com/es-es/idea/features/

8.	 Kubernetes. ¿Qué es Kubernetes? 2022. https://kubernetes.io/es/docs/concepts/overview/what-is-
kubernetes/

9.	 Lewis J, Fowler M. Microservices: a definition of this new architectural term. 2014. https://martinfowler.
com/articles/microservices.html

10.	 Lopez BM, Garcia JL. Impacto de arquitecturas de microservicios en el desarrollo web [Tesis de maestría].
Madrid: Universidad Politécnica de Madrid; 2019. https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_
LOPEZ.pdf

11.	 Mozilla Developer Network. HTML5. 2023. https://developer.mozilla.org/es/docs/Glossary/HTML5

12.	 Postman. What is Postman? 2024. https://www.postman.com/product/what-is-postman/

13.	 Richardson C. Microservices patterns: With examples in Java. New York: Manning Publications; 2019.

14.	 Rock Content. What is Bootstrap? 2020. https://rockcontent.com/es/blog/bootstrap/

15.	 Said M, Ezzati A, Arezki S. Microservice-specific language, a step to the low-code platforms. In: Lecture
Notes in Networks and Systems. 2023;637:817-28. doi:10.1007/978-3-031-26384-2_72

16.	 Spring. Spring Framework. 2024. https://spring.io/projects/spring-framework

17.	 The Thymeleaf Team. Thymeleaf. 2024. https://www.thymeleaf.org/

18.	 Trello. Trello Tour. 2023. https://trello.com/es/tour

 EthAIca. 2024; 3:132 28

ISSN: 3072-7952

https://doi.org/10.56294/ai2024132
https://www.digitalocean.com/products/kubernetes
https://www.digitalocean.com/products/kubernetes
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
https://kafka.apache.org/
https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio
https://www.jetbrains.com/es-es/idea/features/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_LOPEZ.pdf
https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_LOPEZ.pdf
https://developer.mozilla.org/es/docs/Glossary/HTML5
https://www.postman.com/product/what-is-postman/
https://rockcontent.com/es/blog/bootstrap/
https://spring.io/projects/spring-framework
https://www.thymeleaf.org/
https://trello.com/es/tour

19.	 Vincent P, Lijima K, Driver M, Wong J, Natis Y. Gartner magic quadrant for enterprise low-code
application platforms. Stamford: Gartner, Inc.; 2019. https://www.gartner.com/en/documents/3956079

20.	 World Wide Web Consortium. SPARQL 1.1 Query Language. 2013. https://www.w3.org/TR/sparql11-
query/

FINANCING
None

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Tomás Darquier, Pablo Alejandro Virgolini.
Data curation: Tomás Darquier, Pablo Alejandro Virgolini.
Formal analysis: Tomás Darquier, Pablo Alejandro Virgolini.
Research: Tomás Darquier, Pablo Alejandro Virgolini.
Methodology: Tomás Darquier, Pablo Alejandro Virgolini.
Project management: Tomás Darquier, Pablo Alejandro Virgolini.
Resources: Tomás Darquier, Pablo Alejandro Virgolini.
Software: Tomás Darquier, Pablo Alejandro Virgolini.
Supervision: Tomás Darquier, Pablo Alejandro Virgolini.
Validation: Tomás Darquier, Pablo Alejandro Virgolini.
Visualization: Tomás Darquier, Pablo Alejandro Virgolini.
Writing – original draft: Tomás Darquier, Pablo Alejandro Virgolini.
Writing – review and editing: Tomás Darquier, Pablo Alejandro Virgolini.

 29 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://www.gartner.com/en/documents/3956079
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.56294/ai2024132

