EthAlca. 2024; 3:132
doi: 10.56294/ai2024132 AG
EDITOR

ORIGINAL

Prototyping and Validation of a Low-Code Platform for Dynamic Code Generation
in Microservices

Prototipo y Validacion de una Plataforma Low-Code para Microservicios con
Generacion Dinamica de Codigo

Tomas Darquier’, Pablo Alejandro Virgolini'
"Universidad Siglo 21, Licenciatura en Informatica, S.C de Bariloche. Argentina.

Cite as: Darquier T, Virgolini PA. Prototyping and Validation of a Low-Code Platform for Dynamic Code Generation in Microservices.
EthAlca. 2024; 3:132. https://doi.org/10.56294/ai2024132

Submitted: 16-08-2023 Revised: 04-01-2024 Accepted: 24-05-2024 Published: 25-05-2024
Editor: PhD. Rubén Gonzalez Vallejo
ABSTRACT

Introduction: the project addressed the issue of developing microservice architectures, a practice increasingly
adopted in the software industry due to its benefits in terms of scalability and maintenance. However, its
implementation involves a high degree of technical complexity, especially in the design, integration, and
deployment stages. Given this scenario, the development of a low-code web platform was proposed to
facilitate the visual design of microservices, reducing development times and technical barriers.

Method: to carry out the proposal, the agile Scrum methodology was applied, allowing for iterative and
incremental construction of the system. The platform was developed with technologies such as Java and
Spring Framework in the backend, HTML, CSS, JavaScript, and Thymeleaf in the frontend, and PostgreSQL
as the database. Apache Kafka was incorporated for asynchronous communication, MinlO for storage, and
semantic technologies such as RDF and SPARQL managed by Apache Jena. Code generation was performed
with Apache Velocity, based on predefined templates.

Results: the system allowed users to design microservice architectures using a visual interface (canvas),
configure specific properties, and automatically generate source code. In addition, it incorporated validations
that ensured the consistency of the designs and offered mechanisms for authentication and export of the
generated code.

Conclusions: the platform achieved its goal of simplifying microservice development through a low-code
approach. Its usefulness as a support tool for developers was validated, reducing complexity and time spent
on repetitive technical tasks.

Keywords: Microservices; Low-Code; Code Generation; Distributed Architecture; Agile Development.
RESUMEN

Introduccion: el proyecto abordo la problematica del desarrollo de arquitecturas de microservicios,
una practica cada vez mas adoptada en la industria del software por sus beneficios en escalabilidad y
mantenimiento. Sin embargo, su implementacion implica una alta complejidad técnica, especialmente en
las etapas de diseno, integracion y despliegue. Frente a este escenario, se planteo el desarrollo de una
plataforma web Low-code que facilitara el diseno visual de microservicios, reduciendo tiempos de desarrollo
y barreras técnicas.

Método: para llevar a cabo la propuesta, se aplico la metodologia agil Scrum, permitiendo una construccion
iterativa e incremental del sistema. La plataforma se desarrollé con tecnologias como Java y Spring
Framework en el backend, HTML, CSS, JavaScript y Thymeleaf en el frontend, y PostgreSQL como base
de datos. Se incorporaron Apache Kafka para comunicacion asincrénica, MinlO para almacenamiento, y
tecnologias semanticas como RDF y SPARQL gestionadas por Apache Jena. La generacion de codigo se realizd
con Apache Velocity, en base a plantillas predefinidas.

© 2024; Los autores. Este es un articulo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribucion y reproduccion en cualquier medio siempre que la obra original
sea correctamente citada

https://doi.org/10.56294/ai2024132
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/ai2024132
https://orcid.org/0000-0002-9697-6942

EthAlca. 2024; 3:132 2

Resultados: el sistema permitio a los usuarios diseiar arquitecturas de microservicios mediante una interfaz
visual (canvas), configurar propiedades especificas y generar codigo fuente automaticamente. Ademas,
incorpord validaciones que aseguraron la consistencia de los disefios y ofrecié mecanismos de autenticacion
y exportacion del codigo generado.

Conclusiones: la plataforma logro cumplir su objetivo de simplificar el desarrollo de microservicios a través
de un enfoque Low-code. Se validé su utilidad como herramienta de apoyo para desarrolladores, reduciendo
la complejidad y el tiempo invertido en tareas técnicas repetitivas.

Palabras clave: Microservicios; Low-Code; Generacion de Codigo; Arquitectura Distribuida; Desarrollo Agil.

INTRODUCTION

The development of modern applications poses increasingly complex challenges, especially when distributed
architectures such as microservices are adopted.%>% This approach, although highly beneficial in terms of
scalability, modularity, and maintenance, introduces significant difficulties during the design, implementation,
and integration of the various components.®%7® Faced with this reality, this project proposed as a solution
the design and implementation of a low-code platform aimed at facilitating the creation of microservice
architectures in a visual, intuitive, and customizable way, targeting software developers in particular.®%1

With the aim of achieving a functional and flexible product, the agile **Scrum** methodology was adopted,
which allowed for the incremental development of the system through iterations known as Sprints. This
strategy facilitated the incorporation of continuous improvements and rapid adaptation to technical obstacles,
technology changes, or design reorientations, without compromising the overall progress of the project.(21314

During its implementation, the system integrated a variety of technologies organized into different levels.
For the **front-end**, HTML5, CSS, and JavaScript were used, complemented by Bootstrap and Thymeleaf,
allowing for a smooth and adaptable user experience. On the **back end**, Java with Spring Framework was
used to build a robust and secure foundation, with authentication via OAuth2 provided by Okta. Tools such
as PostgreSQL for data management, Apache Kafka for asynchronous communication, and MinlO for storing
generated code were also incorporated. (%1617

One of the most innovative features of the system was the automatic generation of code based on user
interaction with the canvas. This functionality was made possible by the use of semantic technologies such as
RDF and SPARQL, managed by Apache Jena and powered by Apache Velocity for the creation of customizable
ﬁles.(18,19,20)

Data collection for the design and validation of the project combined specialized academic sources and
technical discussion forums on social networks such as Reddit, Twitter, and Medium. This fusion of theory and
practice allowed for a better understanding of the problem and informed the technological decisions made.

In summary, the platform developed seeks to lower the technical barrier in the design of distributed systems,
promoting the use of reusable and configurable components, all within a low-code visual environment capable
of generating architectures ready for deployment with minimal manual intervention.

How can we facilitate the design, configuration, and integration of microservice architectures using a low-
code platform that reduces technical complexity and development time without compromising the quality of
the software generated?

Objective

To develop a low-code platform that allows developers to design, configure, and integrate microservice
architectures in a visual and intuitive way, using reusable components, automating code generation, and
optimizing development times with validations that ensure system quality.

METHOD
Methodological Design
Methodological Tools

During the development of this system, the guidelines established by the agile Scrum methodology were
followed, a framework that facilitates collaboration between teams to deliver products in an iterative and
incremental manner, allowing for rapid adaptation to changes and encouraging continuous improvement.

In this way, at the end of each Sprint, functional portions of code were obtained, even though the complete
system was not developed, learning from each iteration and applying the knowledge in the next one. Thus, the
product benefited from the aforementioned agile characteristics, even allowing for a change in technologies
based on the knowledge obtained during the development process without any repercussions.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

3 Darquier T, et al

Development Tools

Multiple technologies were used in the development of the project, which will be explained and justified
below, organized into four groups according to their specific activity: front-end tools, those intended for the
back-end for basic logical authentication and exchange with the front-end embedded in the gateway, back-end
technologies for automatic code generation, and finally, technologies used to facilitate system deployment and
scalability.

The tools used in the development of the front-end include the now standard set of JavaScript, HTML5, and
CSS, allowing for the creation of a complete visual appearance with high compatibility, as well as correct and
adaptable communication logic with the back-end. In turn, these tools were enhanced with Bootstrap, which,
with the help of its pre-designed components, alleviated the workload related to aesthetic design, allowing
multiple functionalities to be managed within the same page without neglecting this aspect. In this way, and
with the help of Thymeleaf, the front-end was coupled to the APl Gateway to avoid unnecessary complexities.

The back-end was developed mostly in Java 17, using the Spring framework and its well-known libraries
for correct, clean, and efficient communication between services, mostly using the REST architecture style.
Security was managed and implemented using OAuth2 based on the service offered by Okta, a standard that
allows websites or applications to access resources hosted in other applications on behalf of and with the prior
permission of the user. Aspects requiring relational data persistence were provided by a PostgreSQL database
instance, chosen for its open source environment, as well as its remarkable flexibility, data integrity, and
scalability. In addition, asynchronous communications were handled for sending notifications using Apache
Kafka.

The logic related to dynamic code generation was managed semantically using RDF, which allowed the
combinations and decisions made by the user on the front-end canvas to be specified correctly and in a structured
manner, so that they could be sent to the back-end, queried using the SPARQL query language, and managed by
Apache Jena in the Java services. To complete the process and generate the code specified and requested by
the user, we decided to use Apache Velocity, due to its high capacity for the task required, and MinlO for storing
and downloading the resulting files, thus avoiding dependence on specific cloud storage solutions.

Finally, the deployment and scalability of the system was managed using Docker, powered by Kubernetes. In
this way, as with other decisions outlined above, dependence on cloud solutions is reduced, giving the system
greater versatility and independent deployment capabilities.

Data Collection

To properly understand the problem to be addressed, we began by analyzing academic bibliographic sources.
This approach allowed us to identify the main challenges in the development of distributed architectures, as
well as the associated costs.

Another data collection method used was social media analysis. Due to the public nature of the project, this
methodology proved highly enriching thanks to platforms such as Twitter, Reddit, and Medium, where software
developers share and discuss ideas and experiences on topics and situations in the field of computing.

This resulted in two clearly contrasting approaches, thus justifying the choice of techniques presented.
These approaches are divided into strictly theoretical ones, based on academic documents, and, at the other
extreme, those based on social networks, which draw on the daily experiences of developers, who, at the end
of the day, are the ones affected by the problem.

Project Planning

For ease of understanding, the planning will first be presented separately, followed by the Gantt chart used
to organize the objectives of this Final Graduation Project.

Next, the tasks specified are presented together with the corresponding dates, followed by the aforementioned
Gantt chart.

Nombre de tarea Fecha de inici Fecha final

07/08/2024 09/11/2024

Temitica y Relevamiento 07/08/2024 05/09/2024
Eleccion y Presentacion de Temitica 07/08/2024 19/08/2024
Titulo, Introduccién y Justificacion 20/08/2024 22/08/2024
Objetive General y Espeificos 23/08/2024 25/08/2024
Marco Tedrico Referencial 28/08/2024
Disefio Metodologico 31/08/2024
Relevamiento 03/09/2024

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 4

Proceso de Negocios 04/09/2024 = 05/09/2024
Propuesta y Definicién del Prototipo ~ 06/09/2024 23/09/2024
' Diagnéstico y Propuesta 06/09/2024 08/09/2024
Objetivos, Limites y Alcances 09/09/2024 = 11/09/2024
Descripcidn del Sistema 12/09/2024 15/09/2024

- Estructura de Datos 16/09/2024 18/09/2024
Prototipos de Interfaces 19/09/2024 22/09/2024
Diagrama de Arquitectura 23/09/2024 | 23/09/2024
Riesgos y Control 24/09/2024 01/10/2024
Documentacin de Seguridad 24/09/2024 | 25/09/2024
Anilisis de Costos 26/09/2024 28/09/2024
Anilisis de Riesgos 29/09/2024 | 01/10/2024
Finalizacidn de Entregable 02/10/2024 06/10/2024
Conclusiones y Anexos 02/10/2024 04/10/2024
Revisién y Correccién General 05/10/2024 06/10/2024
Desarrollo y Pruebas del Prototipo 23/09/2024 09/11/2024
Desarrolio del Prototipo 23/09/2024 05/11/2024
Pruebas del Prototipo 02/11/2024 09/11/2024

Figure 1. Development Plan

Agosto 2024 ~Septiembre 2024 Octubre 2024 Noviembre 2024
5-11(325) 12-18(33s) 19-25(34s) 26-1(35s) 2-8(36s) 9-15(37s) 16-22(38¢) 23-29(39s) 30-6(40s) 7-13(41s) 14-20(425) 21-27(43¢) 28-3(44s) 4-10(45s) 11-17 (44s) 18-24 (479

Tematica y Relevamiento 1 07/08/2024 - 05/09/2024
I | cicccion y Presentacion de Tematica
- Titulo, Introduccidn y Justificacion
B Objetivo General y Espeificos
B Warco Tedrico Referencial
- Disefio Metodologico
- Relevamiento

-, Proceso de Negocios
P y Definicién del tipo 1 06/09/2024 - 2310972024

I Diagnéstico y Propuesta
| Objetivos, Limites y Alcances
B Descripcion del Sistema
- Estructura de Datos
B | Frototipos de Interfaces
B Diagrama de Arquitectura
Riesgos y Control 1 24/09/2024 - 01/10/2024

B Documentacién de Seguridad
B Andlisis de Costos
B Anilisis de Riesgos
Finalizacion de Entregable | 02110/2024 - 06/10/2024
- Conclusiones y Anexos

Bl Revsiony Correccidn General
Desarrollo y Pruebas del Prototipo 1 23/09/2024 - 09/11/2024

[, Desarrollo del Prototipo
I Frucbas del Prototipo

Figure 2. Gantt chart

RESULTS
System Description
Product Backlog

The Product Backlog for the prototype to be developed is presented below. It should be noted that the user
stories shown correspond only to the basic functionalities necessary to demonstrate the purpose of the system.
For this reason, only customizable e-commerce components are presented, as this allows the functionalities
related to the combination and customization of compatible components within the application canvas to be
demonstrated.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

5 Darquier T, et al

User stories

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 6

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

7 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 8

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

9 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 10

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

11 Darquier T, et al

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 12

Sprint Backlog
The following table shows the Backlog for the first Sprint of the prototype to be developed, with a set
duration of 14 days.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

13 Darquier T, et al

Data Structure

The project has four data structures that support its processes and interactions, providing the system with
everything from correct information persistence to a notable improvement in overall system efficiency and the
ability to send asynchronous notifications to users within the platform.

Below is the DER diagram of the PostgreSQL relational database, which handles user administration and
management and their corresponding identifiers, including those provided by the OAUTH2 identification server.

= users
PK | user_id
oauth_provider
oauth_id =
user_activity
email
activity_id
name
+H O€ user_id PK
created_at
activity_type FK
ip_address
created_at

Figure 3. DER relational database for user management

The data dictionaries for the relational database just presented are shown below:

During the design of the system, it was found that including temporary cache storage could provide a
temporary reduction in the system’s response to the user, taking advantage of previously performed processing.
For this reason, temporary storage was implemented with REDIS, which seeks to reduce calls to the Spring

Initializr API by analyzing previous calls in a short period of time in search of one that is similar to the one to
be made.

The following diagram illustrates the process mentioned above:

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 14

Verificar caché, en caso
de encontrar lo buscado, Caché
el caché provee el contenido

A&

DATA FORMAT Spring Initializr API

{
"url_SHA256"; "xxxx"

"pom_file"; "<>__</>"

}

Se graba el pom.xml
en caché referenciado
por el hash de la url
correspondiente

2)
Si el caché no posee el recurso en memoria,
se produce un request a Spring API, en
busca del pom.xml

Figure 4. Explanation of cache system functionality

In this way, in many cases, valuable time consumed by a call to an external API is saved.
The simple data structure of the cache mentioned above is shown below:

init_request

"url_SHA256": "558e7c63a0b(...)",
"pom_file": "<>(...)</>"

Figure 5. Cache data structure for poms generation

The dictionary for the data structure presented is shown below

Table 38. Dictionary of data present in the cache

Field Length Data type Description

url_SHA256 64 Alphabetic SHA-256 hash of the URL used for the
request to the Spring Initializr API

pom_file 65535(max) Alphabetical Contents of the pom.xml file
resulting from the request

A data structure was also defined to store the architectures designed by users on the platform and their
corresponding automatically generated code. In this way, using MinlO, the system has a platform where it can
work dynamically with the code, allowing users to download a .zip file with the designed architecture. The
aforementioned data structure complies with the format of figure 6:

In addition, for proper functioning in asynchronous processes, the system required the inclusion of a
messaging system. In this case, Apache Kafka was chosen. This tool performs two crucial tasks for the system:

e Inform of the presence of a new architecture to be generated and provide its specification.

¢ Keeping the user updated on the generation process of the requested code, informing them of the
status of the final product.

e The topics used for the aforementioned functions are service-generation-request and service-
generation-status, respectively, which interact with the system services (figure 7).

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

15 Darquier T, et al

=
Iprojects
=
Hproject_id}
i
Hservice-name}
P

pom.xmi

Isre

s i

fdockerfile

Dockerfile

> .TODOSDE[

==
Iproject_zip

.

{project_id}.zip

Figure 6. File structure for storing and generating code

Kafka Cluster

Broker

Producer service-generation-request Consumer
request P1 < generation
service | | service

Consumer

Producer

' N — — — — — — '
generation service-generation-status notification
service - - - = — " service

\
~—' - |

L - - — - —

Figure 7. Diagram explaining the asynchronous message system

As can be seen in the diagram, the service consists of a single broker, and service-generation-request has two
partitions, compared to service-generation-status, which only has one. This decision is based on the possibility
of parallel processing of user-generated requests provided by the presence of more than one partition, which
is not necessary in the case of code generation progress messages.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 16

The data model for each topic mentioned is presented below.

Service-generation-status:

Using the information contained in the topic described above, the system is able to keep the user informed
of the progress made in generating the code for the system they designed on the canvas.

Figure 8. Data structure of the topic ‘service-generation-status’

The dictionary for the data structure presented is shown below:

Service-generation-request: the information carried by this defined topic is critical to the functioning of the
system, since based on the JSON example below, the system asynchronously receives new tasks to be processed
and builds the necessary code requested by the user. It is important to note that JSON has many attributes that
may seem unnecessary for the prototype, as they do not allow customization, but this ensures that the system
is ready for further customization in the event of full development.

The dictionary for the data structure presented is shown below:

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

17 Darquier T, et al

Figure 9. Data structure of the ‘service-generation-request’ topic

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 18

Screen Interface Prototypes
When accessing the web platform, users are required to log in using their Google account.

Inicia sesidén:

Google

Figure 10. Login screen

Once the user has been validated and/or registered in the system, they are sent to the platform’s home
page, where its core functionality, related to distributed systems design, is located.

A a——

|API Gateway |Conﬂg Server |.JWT Securltylj

Usuarios

¢

N
Carrito

A

Notificaciones

A
-
] Catalogo
2[2]
.
Envios

Ordenes Generar Codigo
)

Figure 11. Home screen

On the main screen, the user can drag the components of the architecture onto the canvas to begin designing
the system.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

19 Darquier T, et al

[= I T

) | [aP1Gateway| 1 [config Server] | [owT Securltylj

Usuarios

LA

™y
Carrito

W T

—_— Catalogo

]
a7)

oo

I1b)
1

...................

| Ordenes | Generar Cadigo
—y

Figure 12. Drag-and-drop functionality

The components placed on the canvas can, if compatible, be joined together to generate more complex
functionalities through their interaction.

[B2 I ST

|APIGatewav |Confg Server |_| |JWT Security.:’

Usuarios

Catalogo

Notificaciones

A

—
—
u Catalogo

2]2]

—

Carrito

Envios

——
Ordenes Generar Codigo

)

Figure 13. Component joining functionality

To customize each component placed on the canvas, the user must click on the corresponding gear icon to
access the configuration menu.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 20

0 =20 TS I

Carrito

Persistencia

I PostgreSQL ﬁ
v
|

Comunicacion

[REST

Endpoints Prefix
[rcartivis

Figure 14. Component configuration screen
Once the user has designed and configured a specific architecture to their liking, they can generate the

corresponding code by pressing the green button located in the lower right corner of the canvas, where they
will receive real-time progress on the dynamic code generation process.

0 0 TS S

Cerrar Sesion

Generando Codigo...

Generar Cdd{“

Figure 15. Code generation process screen
To learn about the different components that can be used on the canvas, their composition, operation,

persistence methodology, and compatibilities, users can access the documentation section, where they will find
the information necessary to understand each available piece.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

21 Darquier T, et al

m Documentacion Guia de Uso m Cerrar Sesion

¥ Componentes E -
nvios
P Mannios Persistencia
P Carrito
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam eget
» Ordenes vulputate lectus. Mauris nibh mauris, rhoncus eu odio eu, pulvinar sy
Envi hendrerit ex. Ut sit amet leo dui. Praesent commodo egestas tincidunt.
¥ Envios Etiam at iaculis lectus. Pellentesque semper ornare ex, maximus volutpat
Composicion ante mattis in. Curabitur quis lacinia libero. Integer ligula libero,

blandit id nisl ac, pharetra cursus ipsum. Nulla nec rhoncus purus, non

Persistencia suscipit quam.
Compatibilidad

P Notificaciones
Praesent vestibulum, lacus non mollis consectetur, massa massa hendrerit
odio, nec convallis diam leo nec nibh. Suspendisse sagittis consequat
metus. Donec pretium neque urna, a condimentum elit rutrum eget. Sed
semper diam vitae neque semper molestie. Quisque sed leo faucibus,
fincidunt enim at, porttitor elit. In et est enim. Sed mi velit,

consequat eget venenatis non, pellentesque ac ante. In eu bibendum nunc,
non semper lectus. Donec sed fermentum nulla. Quisque eu velit nulla.

Figure 16. Documentation screen

If users wish to understand how the platform works, there is a section called User Guide, where they can
access the aforementioned information.

0 == T ST

Guia de Uso

La Plataforma

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam eget
vulputate lectus. Mauris nibh mauris, rhoncus eu odio eu, pulvinar
hendrerit ex. Ut sit amet leo dui. Praesent commodo egestas tincidunt.
Etiam at iaculis lectus. Pellentesque semper ornare ex, maximus volutpat
ante mattis in. Curabitur quis lacinia libero. Integer ligula libero,
blandit id nisl ac, pharetra cursus ipsum. Nulla nec rhoncus purus, non
suscipit quam.

¢Como Funciona?

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam eget
vulputate lectus. Mauris nibh mauris, rhoncus eu odio eu, pulvinar
hendrerit ex. Ut sit amet leo dui. Praesent commodo egestas tincidunt.
Etiam at iaculis lectus. Pellentesque semper omare ex, maximus volutpat
ante mattis in. Curabitur quis lacinia libero. Integer ligula libero,
blandit id nisl ac, pharetra cursus ipsum. Nulla nec rhoncus purus, non

Figure 17. User guide screen
When the system user generates architectures on the canvas, the last five are saved and can be downloaded

from the Profile section, which provides basic useful information about the architectures and a link to download
them.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 22

Al Lo L

NombreDeUsuario

Arquitecturas Recientes

Fecha | Peso |Descarga
18-2-24 732kb zip
17-2-24 | 2044kb zip

10-2-24(2) | 1487kb zip
10-2-24(1) | 662kb zin
10-2-24 902kb zip

Figure 18. User profile screen

Finally, to conclude their activity on the platform, users can log out by clicking the button in the upper right
corner after confirming that they wish to do so.

o

iCerrar Sesion?

Figure 19. Logout screen

Architecture Diagram

The architecture diagram for the project discussed in this document is shown below. Due to the decisions
made, as can be seen in the diagram, a highly scalable and efficient system was achieved for the intended
purpose.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

23 Darquier T, et al

9 DigitalOcean Kubernetes Cluster

download code
service I service

code-storage
init
service

-

DAUTHZ Google
Authentication Server user

service

[=]
w
)
]
£

.

Web User notification

service

H

users-db init-cache H

H

~ H
 EEE— message-broker H
[H

request il H
service service !
S A H
H

.

% % H
H

H

H

H

H

H

H

H

H

H

H

discovery config
server server

Figure 20. Architecture diagram

Private Network

Security
Access to the Application

As stated repeatedly throughout this document, the project manages users through OAuth2, specifically
through Google login, which is a very convenient alternative for an application such as the one developed, due
to its permission for access by the general public.

Although for backup, auditing, and resource management purposes, the project itself stores the information
of users registered on the platform, passwords are managed by Google, since it is through a user of the
aforementioned platform that the system grants access to the project. Therefore, users must comply with
Google’s requirements for creating their credentials. Below is a list of Google’s current requirements for
creating an email address under its domain and the corresponding password.

Requirements for creating an email address:

e |t must follow the standard format for an email address, i.e., nombre@dominio.com. In this case,
the domain is @gmail.com.

e The username, i.e., the text before the ‘@’, must contain between 6 and 30 characters.

e Only characters from a-z and A-Z are allowed, as well as numbers 0-9 and special characters such
as the period (.), the underscore (_), and the hyphen (-).

e The email address must not be in use in Gmail. This means that each email address must be unique.

Requirements for specifying a password:
e The password must contain more than 8 characters.
e Although there is no related limitation, the use of lowercase letters, uppercase letters, numbers,
and special characters is recommended.
e |t must not be included in Google’s list of common passwords.

In turn, Google stores user passwords using hash functions that convert the password into an irreversible
text string, as well as adding a random value called a ‘salt’ to make brute force attacks more difficult. It is also
worth noting that Google users can enable two-factor authentication, known as 2FA, which adds an extra layer
of security by requiring a second element to access the user account.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 24

With regard to the user roles outlined below, due to the nature of the project and the development of only
core functionalities for the prototype, the administrator user has no advantage or differential capacity. Even
so, it was added to the system in a “logical” manner, with a view to future updates that may provide features
requiring extra control within the application.

Profiles present in the application:

e Regular user: has access to all the features present in the technological prototype, i.e., the
specification, configuration, and download of services referenced to their user profile and the ability to
consult both the documentation present on the platform and the user guide.

e Administrator user: as explained above, the administrator user does not currently have any
different permissions from the common user, but is still present in the system in case of possible updates.

Information Backup Policy

In order to back up the information related to both the application code and the information produced as
a result of its use and execution, two copies of the application source code and three copies of the user data
are stored.

User data is initially stored on the hosting service where the database engine container volume is stored.
In this case, the cloud service provider is DigitalOcean. As a second backup, the system runs a process every
day at 00:00 (GMT-3) to keep a copy of the database content on the local server at the development offices.
Finally, in order to maximize user data integrity, a copy of the user data is stored weekly on an external hard
drive, which is stored in a confidential location in a building other than the local server and is known only to
the company’s management.

The application source code is handled and stored on GitHub, where developers work on it. In turn, as
mentioned above, functional versions are backed up and stored in two instances upon completion. First,
the code is stored manually on the company’s local server and then stored on an external hard drive kept
in a confidential location in a building other than the company’s offices and known only to the company’s
management.

The local server mentioned for both source code and user data backup is a NAS located in the development
offices, configured with RAID 10 to obtain a high level of redundancy and remarkable performance, ensuring
outstanding information availability even in the event of incidents and providing fast recovery of persistent
content.

DigitalOcean also takes availability into account and, in fact, this is one of the factors that influenced the
decision to run the system on its cloud services, since the platform boasts 99,99 % uptime for the products used
to deploy and run the developed project.®

Cost Analysis

Below is a breakdown of the estimated costs of the project in terms of the human resources required for
the development of the computer system. These were obtained from the website of the Professional Council of
Computer Sciences of the province of Cordoba on October 21, 2024.

Table 41. HR cost analysis

Role Fees Months Subtotal (ARS)
Senior Programmer Analyst $1 697 430,72 3 $5 092 292,16
Backend Developer $1 985 445,37 3 $5 956 335,93
Frontend Developer $1 883 828,08 2 $3 767 656,16
Application Testing Analyst ~ $1 646 481,38 2 $3292 962,76
Total Development $18 109 247

Having presented the figures relating to labor, we now present the operating costs considered necessary for
the proper deployment and operation of the project.

Table 42. Operating cost analysis
Resource Amount Source Subtotal ARS Monthly ARS

* Kubernetes Basic Node 2 https://www.digitalocean.com/pricing - $94 464
(DigitalOcean)

8 GB RAM

4 vCPU

160GB

storage

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132
https://www.digitalocean.com/pricing

Darquier T, et al

Regarding the costs related to the software used for the project’s development, the decision was made to
use open source platforms, accessing free plans to save on licensing costs. Even so, these tools are presented

for informational purposes.

To conclude the cost analysis, a summary of the costs is provided, excluding the salary values detailed
above.

Risk Analysis

The risks that may arise during the course of the project are described and detailed below, divided into
different tables according to their cause. These tables show both the probability and impact of each risk, values
that will be used to determine their significance in the matrix presented below.

Technical Risks

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://www.hostinger.com.ar/domains
https://www.compel.com.ar/storage/storage/nas-drive-au-4b-25-35a335696.html
https://www.compel.com.ar/storage/storage/nas-drive-au-4b-25-35a335696.html
https://www.compel.com.ar/storage/hdd-internal/hdd-3t-sea-35-nas-ironwol-328858.html
https://www.compel.com.ar/storage/hdd-internal/hdd-3t-sea-35-nas-ironwol-328858.html
https://www.compel.com.ar/storage/hdd-internal/hdd-3t-sea-35-nas-ironwol-328858.html
https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 26

Once the identified project risks have been exposed, we proceed with the aforementioned risk matrix in
order to weigh the probabilities of occurrence and their related impacts.

IMPACTO
Insignificante Menor Significativo Mayor Severo

1 2 3 4 5
3 Casi Seguro 0,9 0,9
g Probable 0,7 0,7 1,4
3 Moderado 0,5 1 &
8 [Poco Probable | 0,3 0,9 1,2
& [Raro 0.1 0,4 05

Figure 21. Risk Matrix

Based on the matrix presented, both the tables shown above and the one defined below, referring to the
quantitative analysis of risks, were developed.

Once the degree of risk exposure for each risk detected has been presented, it is time to use the Pareto
Principle to focus attention on the important and critical aspects, ignoring the more trivial ones. The
corresponding graph is shown below.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

27 Darquier T, et al

0,9 100,00%
0,8 90,00%
0,7 80,00%
06 70,00%

60,00%
05

50,00%
04

40,00%
0.3 30,00%
0,2 20,00%
01 10,00%

0 0,00%
3 2 6 5 1 a4
ID de Riesgo

Figure 22. Pareto Principle of Risk Exposure

Once the most threatening risks have been identified using the Pareto Principle, specific contingency plans
have been developed to mitigate these threats. The details of these plans are presented below.

Table 48. Contingency Plans

Risk Contingency Plan

Dependence on third-party APIs for Develop minimum viable internal solutions to reduce

integration or creation of services critical dependence on external APIs. Establish contracts

that are unavailable with key suppliers to ensure response times response times
and availability, and define monitoring mechanisms to
detect failures and act quickly.

Insufficient resources for project Establish a flexible resource allocation plan from the outset,

development allowing efforts to be redistributed according to project
priorities. Propose additional phases or adjustments to the
project scope to adapt to the available budget.

The platform’s response time Conduct a thorough review of the architecture and apply

does not meet expected response specific optimizations in critical areas. Integrate real-time

standards monitoring solutions to detect performance issues and
adjust system capacity.

Security vulnerability in services Implement additional layers of security, such as application-

that interact with databases. level firewalls and encryption of sensitive data. Conduct
regular security-focused code reviews and apply immediate
patches for any vulnerabilities discovered.

CONCLUSIONS

This project demonstrated that combining microservice architectures with low-code approaches is not only
possible but also highly beneficial for reducing complexity in the design and development of distributed systems.
Through the implementation of a visual and intuitive platform, we were able to offer a solution capable of
significantly shortening development times, facilitating component integration, and reducing common errors
during manual coding.

One of the main achievements was the construction of a functional environment that allows developers to
drag, configure, and relate microservices visually, and then automatically generate the corresponding code.
This functionality, supported by technologies such as RDF, SPARQL, and Apache Velocity, is a significant advance
in software development automation, ensuring structural consistency without sacrificing flexibility.

The choice of modern, open source tools such as Java with Spring Framework, PostgreSQL, Apache Kafka,
MinlO, Docker, and Kubernetes was key to ensuring the scalability, portability, and robustness of the system. In
addition, secure authentication practices were implemented with OAuth2 (via Google), along with backup and
distribution mechanisms that ensure data integrity and availability.

On the methodological side, the use of Scrum as an agile framework allowed for iterative product evolution,
fostering continuous improvement and rapid response to technical obstacles or changes in requirements. This
dynamic was essential for adjusting details in real time, improving the functional design of the canvas, and

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132

EthAlca. 2024; 3:132 28

adapting the code generation logic according to the results obtained in each sprint.

The collection of information through the analysis of scientific literature, complemented by observations
on social networks used by developers, provided a comprehensive view of the problem to be addressed. This
integration of theory and practice facilitated the validation of the real needs of the target user and guided the
design of key platform features.

In summary, the developed system fulfills the objective of facilitating the creation of microservice
architectures, providing a powerful, accessible, and adaptable tool. Although it is a functional prototype,
its structure and design anticipate future evolution with greater possibilities for customization, template
expansion, and compatibility with enterprise production environments. The path towards the democratization
of distributed development through low-code platforms is thus open and enhanced with this technological
proposal.

BIBLIOGRAPHIC REFERENCES
1. DigitalOcean. DigitalOcean Managed Kubernetes. 2024. https://www.digitalocean.com/products/
kubernetes

2. Banco Central de la Republica Argentina (BCRA). Cotizaciones por fecha. 2024. http://www.bcra.gob.ar/
PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp

3. Chaudhary HAA, Ahmed T. Integration of micro-services as components in modeling environments for low
code development. ISP RAS. 2021;33(4):19-30. doi:10.15514/ISPRAS-2021-33(4)-2

4. Dhoke P, Lokulwar P. Evaluating the Impact of No-Code/Low-Code Backend Services on APl Development
and Implementation: A Case Study Approach. In: 14th International Conference on Computing Communication
and Networking Technologies (ICCCNT); 2023 Jul 11-13; Chennai, India. Piscataway: IEEE; 2023. p. 1-5.
doi:10.1109/1CCCNT56998.2023.10306945

5. Apache Software Foundation. Apache Kafka. 2024. https://kafka.apache.org/

6. IBM. Minio. 2021. https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio

7. JetBrains. IntelliJ IDEA features. 2024. https://www.jetbrains.com/es-es/idea/features/

8. Kubernetes. ;Qué es Kubernetes? 2022. https://kubernetes.io/es/docs/concepts/overview/what-is-
kubernetes/

9. Lewis J, Fowler M. Microservices: a definition of this new architectural term. 2014. https://martinfowler.
com/articles/microservices.html

10. Lopez BM, Garcia JL. Impacto de arquitecturas de microservicios en el desarrollo web [Tesis de maestria].
Madrid: Universidad Politécnica de Madrid; 2019. https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_
LOPEZ.pdf

11. Mozilla Developer Network. HTML5. 2023. https://developer.mozilla.org/es/docs/Glossary/HTML5

12. Postman. What is Postman? 2024. https://www.postman.com/product/what-is-postman/

13. Richardson C. Microservices patterns: With examples in Java. New York: Manning Publications; 2019.

14. Rock Content. What is Bootstrap? 2020. https://rockcontent.com/es/blog/bootstrap/

15. Said M, Ezzati A, Arezki S. Microservice-specific language, a step to the low-code platforms. In: Lecture
Notes in Networks and Systems. 2023;637:817-28. doi:10.1007/978-3-031-26384-2_72

16. Spring. Spring Framework. 2024. https://spring.io/projects/spring-framework
17. The Thymeleaf Team. Thymeleaf. 2024. https://www.thymeleaf.org/

18. Trello. Trello Tour. 2023. https://trello.com/es/tour

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://doi.org/10.56294/ai2024132
https://www.digitalocean.com/products/kubernetes
https://www.digitalocean.com/products/kubernetes
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
https://kafka.apache.org/
https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio
https://www.jetbrains.com/es-es/idea/features/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/es/docs/concepts/overview/what-is-kubernetes/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_LOPEZ.pdf
https://oa.upm.es/55917/1/TESIS_MASTER_BRUNO_MARTIN_LOPEZ.pdf
https://developer.mozilla.org/es/docs/Glossary/HTML5
https://www.postman.com/product/what-is-postman/
https://rockcontent.com/es/blog/bootstrap/
https://spring.io/projects/spring-framework
https://www.thymeleaf.org/
https://trello.com/es/tour

29 Darquier T, et al

19. Vincent P, Lijima K, Driver M, Wong J, Natis Y. Gartner magic quadrant for enterprise low-code
application platforms. Stamford: Gartner, Inc.; 2019. https://www.gartner.com/en/documents/3956079

20. World Wide Web Consortium. SPARQL 1.1 Query Language. 2013. https://www.w3.org/TR/sparql11-
query/

FINANCING
None

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION
Conceptualization: Tomas Darquier, Pablo Alejandro Virgolini.
Data curation: Tomas Darquier, Pablo Alejandro Virgolini.
Formal analysis: Tomas Darquier, Pablo Alejandro Virgolini.
Research: Tomas Darquier, Pablo Alejandro Virgolini.
Methodology: Tomas Darquier, Pablo Alejandro Virgolini.
Project management: Tomas Darquier, Pablo Alejandro Virgolini.
Resources: Tomas Darquier, Pablo Alejandro Virgolini.
Software: Tomas Darquier, Pablo Alejandro Virgolini.
Supervision: Tomas Darquier, Pablo Alejandro Virgolini.
Validation: Tomas Darquier, Pablo Alejandro Virgolini.
Visualization: Tomas Darquier, Pablo Alejandro Virgolini.
Writing - original draft: Tomas Darquier, Pablo Alejandro Virgolini.
Writing - review and editing: Tomas Darquier, Pablo Alejandro Virgolini.

https://doi.org/10.56294/ai2024132 ISSN: 3072-7952

https://www.gartner.com/en/documents/3956079
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.56294/ai2024132

