
Simplificación del desarrollo de microservicios mediante herramientas Low-code

EthAIca. 2024; 3:147
doi: 10.56294/ai2024147

REVIEW

Simplification of microservice development through low-code tools

Tomás Darquier1, Pablo Alejandro Virgolini1

ABSTRACT

Introduction: enterprise application development has undergone a significant transformation in recent years,
driven by the need for scalable and flexible solutions. This evolution favored the adoption of microservice
architectures, which, while offering benefits such as resilience and modular scalability, also introduced
technical complexities in integration and maintenance. Against this backdrop, low-code tools emerged in
response to the demand for more accessible and faster-to-implement solutions.
Development: the study addressed the technical fundamentals of microservice architectures, characterized
by their ability to divide applications into independent services. However, these architectures posed
challenges in terms of interoperability, the use of multiple languages, and increased testing and deployment
efforts. Various commercial and academic platforms proposed low-code-based solutions aimed at simplifying
microservice design through visual interfaces and reusable components. The technological proposal of the
work integrated modern tools such as Java, Spring, Docker, and Kubernetes, along with visual development
approaches, with the aim of facilitating the creation of efficient distributed systems.
Conclusions: the research concluded that low-code tools offered an effective way to mitigate the complexity
inherent in microservices. These solutions reduced the technical burden without compromising software
quality, promoting more inclusive and sustainable development environments. Likewise, the comparative
analysis of platforms highlighted the need to continue refining these tools to achieve greater flexibility and
standardization.

Keywords: Microservices; Low-code; Interoperability; Distributed architecture; Automation.

RESUMEN

Introducción: el desarrollo de aplicaciones empresariales experimentó una transformación significativa en
los últimos años, motivado por la necesidad de soluciones escalables y flexibles. Esta evolución favoreció
la adopción de arquitecturas de microservicios, las cuales, aunque ofrecieron beneficios como resiliencia
y escalabilidad modular, también introdujeron complejidades técnicas en la integración y mantenimiento.
Ante este panorama, surgieron herramientas Low-code como respuesta a la demanda de soluciones más
accesibles y rápidas de implementar.
Desarrollo: el estudio abordó los fundamentos técnicos de las arquitecturas de microservicios, caracterizadas
por su capacidad de dividir aplicaciones en servicios independientes. No obstante, estas arquitecturas
implicaron desafíos en cuanto a interoperabilidad, uso de múltiples lenguajes y mayor esfuerzo en pruebas
y despliegue. Diversas plataformas comerciales y académicas propusieron soluciones basadas en Low-
code, orientadas a simplificar el diseño de microservicios a través de interfaces visuales y componentes
reutilizables. La propuesta tecnológica del trabajo integró herramientas modernas como Java, Spring,
Docker y Kubernetes, junto con enfoques visuales de desarrollo, con el objetivo de facilitar la creación de
sistemas distribuidos eficientes.
Conclusiones: la investigación permitió concluir que las herramientas Low-code ofrecieron una vía efectiva

© 2024; Los autores. Este es un artículo en acceso abierto, distribuido bajo los términos de una licencia Creative Commons (https://
creativecommons.org/licenses/by/4.0) que permite el uso, distribución y reproducción en cualquier medio siempre que la obra original
sea correctamente citada

1Universidad Siglo 21, Licenciatura en Informática, S.C de Bariloche. Argentina.

Cite as: Darquier T, Virgolini PA. Simplification of microservice development through low-code tools. EthAIca. 2024; 3:147. https://doi.
org/10.56294/ai2024147

Submitted: 03-09-2023 Revised: 21-01-2024 Accepted: 05-06-2024 Published: 06-06-2024

Editor: PhD. Rubén González Vallejo

https://doi.org/10.56294/ai2024147
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.56294/ai2024147
https://doi.org/10.56294/ai2024147
https://orcid.org/0000-0002-9697-6942

https://doi.org/10.56294/ai2024147

para mitigar la complejidad inherente a los microservicios. Estas soluciones permitieron reducir la carga
técnica sin comprometer la calidad del software, promoviendo entornos de desarrollo más inclusivos y
sostenibles. Asimismo, el análisis comparativo de plataformas destacó la necesidad de seguir perfeccionando
estas herramientas para alcanzar mayor flexibilidad y estandarización.

Palabras clave: Microservicios; Low-code; Interoperabilidad; Arquitectura Distribuida; Automatización.

INTRODUCTION
In recent years, enterprise application development has evolved significantly, driven by the need for

scalability, flexibility, and faster delivery times. This context has favored the adoption of microservice-based
architectures, an approach that allows an application to be divided into small, independent, and easily
deployable components. While this methodology offers benefits such as system resilience and individualized
component scalability, it also introduces significant technical challenges. These include integration complexity,
the management of multiple services developed in different languages, and the need for specialized tools to
ensure interoperability between components.

Authors such as Newman(1) and Fowler have highlighted these difficulties, pointing out how the implementation
of microservices requires advanced technical resources, as well as additional effort in the development, testing,
and maintenance stages. Despite these barriers, the demand for more agile solutions has led to the emergence
of platforms that seek to abstract this complexity. In this scenario, low-code tools have emerged, which allow
the development of complex systems through graphical interfaces and preconfigured elements, thus reducing
the need for manual programming.

Companies such as Microsoft (with Power Apps) and BettyBlocks have introduced platforms aimed at
simplifying the design of distributed architectures, democratizing access to software development even for
users with limited technical knowledge. This approach has also been addressed by academic research proposing
domain-specific languages (DSLs) and visual environments based on techniques such as drag and drop or graphical
blocks, similar to those used in educational platforms such as Scratch.(2)

This paper presents a technological proposal that seeks to optimize the development of microservices through
low-code tools, integrating modern technologies such as Java, Spring, PostgreSQL, Docker, and Kubernetes,
together with visual interfaces that facilitate the creation and integration of services. The research is based
on a theoretical framework that analyzes both the technical fundamentals of microservices and the impact of
low-code solutions on development productivity. Through this initiative, we aim to contribute to the design
of more accessible, scalable, and sustainable systems, reducing the technical burden without sacrificing the
quality and robustness of the resulting software.

DEVELOPMENT
THEORETICAL FRAMEWORK
Problem Domain

First, we must define what we mean when we talk about a distributed microservices architecture. As
Newman(1) points out, “distributed microservices architectures divide an application into small, autonomous,
independently deployable services, allowing organizations to scale specific components as needed and improve
overall system resilience”.

This type of architecture allows interoperability between microservices developed in different programming
languages, due to its communication standards such as REST or gRPC and its service contracts.

Interoperability in microservice architectures is crucial, given that services can be built in different
programming languages or platforms. Maintaining common standards in interfaces and service contracts is
essential to ensure that these services can communicate effectively, although this also introduces additional
complexities into the development and maintenance process.

The aforementioned complexities inherent in microservice architectures can delay development, testing,
and integration times, affecting the production capabilities of a company or developer.

These systems are typically designed to be scalable and resilient, but that does not come without a cost. It
can add complexity to the development process, as it is anothe y system that you may need to run to develop
and test your services. Additional machines and expertise may also be required to keep this infrastructure
running.(1)

Due to the above, many companies decided to provide the market with tools to try to mitigate the conflicts
exposed. This is why web tools such as Microsoft’s Power Apps or BettyBlocks had their genesis in providing
developers with abstractions from the excessive complexity presented by distributed architectures, allowing
the development of applications of this nature in a simpler way through low-code initiatives.

 EthAIca. 2024; 3:147 2

ISSN: 3072-7952

In turn, the proposed solution for simplifying the development of microservices using low-code tools has
been and continues to be investigated by various authors in the academic field, highlighting the presence of
the problem addressed. Examples include Chaudhary and Margaria(2) with their solution based on DSL and drag
and drop, and Dhoke and Lokulwar with their proposal supported by an interface similar to that found on the
Scratch platform, which allows backend services to be programmed using pre-built visual blocks and templates.

Tics
The technologies used in the development of the project are listed below:

Programming
Java: “Java is a cross-platform, object-oriented, network-centric language that can be used as a platform

in itself”.
JavaScript: “JavaScript is a programming or scripting language that allows you to implement complex

functions on web pages”.(3)

Frameworks and Libraries
Spring: “Spring Framework provides a comprehensive programming and configuration model for modern

Java-based enterprise applications on any deployment platform”.(4)

Apache Velocity: “Velocity is a Java-based template engine. It allows anyone to use a simple but powerful
template language to reference objects defined in Java code”.(5)

Apache Jena: “Jena is a Java framework for creating Semantic Web applications. It provides extensive Java
libraries to help developers develop code that handles RDF, RDFS, RDFa, OWL, and SPARQL”.(5)

Thymeleaf: “The main goal of Thymeleaf is to bring natural and elegant templates to your HTML development
workflow, which can be correctly rendered in browsers and also work as static prototypes.”

Bootstrap: “Bootstrap is a front-end framework used to develop web applications and mobile-first sites, i.e.,
with a layout that adapts to the screen of the device used by the user”.(6)

Database Engine
PostgreSQL: “PostgreSQL, commonly pronounced ‘Post-GRES’, is an open source database with a solid

reputation for reliability, flexibility, and support for open technical standards”.(7)

Other Technologies
GitHub: “GitHub is a platform where you can store, share, and work together with other users to write

code”.(8)

RDF: “RDF is a standard model for exchanging data on the Web. RDF has features that make it easy to
combine data even if the underlying schemas differ”.

SPARQL: “SPARQL contains capabilities for querying required and optional graph patterns along with their
conjunctions and disjunctions via RDF”.

HTML5: “The latest stable version of HTML, HTML5 converts HTML from a simple markup format for structuring
documents into a complete application development platform”.(3)

CSS: “CSS, short for Cascading Style Sheets, is a declarative language that controls the appearance of web
pages in the browser”.(3)

Docker: “Docker packages software into standardized units called containers that include everything needed
for the software to run, including libraries, system tools, code, and runtime”.

Kubernetes: “Kubernetes is a portable and extensible open source platform for managing workloads and
services. Kubernetes makes automation and declarative configuration easy”.(9)

MinIO: “Minio is a high-performance distributed object storage server designed for large-scale private cloud
infrastructure”.(7,10,11)

Apache Kafka: “Apache Kafka is an open source distributed event streaming platform used by thousands
of companies for high-performance data pipelines, streaming analytics, data integration, and mission-critical
applications”.(5,12)

IntelliJ IDEA: “IntelliJ IDEA features one of the most powerful code editors in the industry. Understand the
ins and outs of your code thanks to initial indexing.”(13,14)

Postman: “Postman is a platform for creating and using APIs. Postman simplifies every step of the lifecycle
and streamlines collaboration so you can build better APIs faster”.(10,15,16)

Trello: “Trello is a visual tool that allows teams to manage any type of project and workflow, as well as
monitor tasks”.(17)

Competition
The following table shows and compares the main features of the different solutions available on the market

 3 Darquier T, et al

https://doi.org/10.56294/ai2024147 ISSN: 3072-7952

https://doi.org/10.56294/ai2024147

that are similar to the one proposed in this project.

Table 1. Comparison of companies with low-code solutions

Pages Automatic Microservice
Generation

REST
support

gRPC
support

Integration with
external systems

Container
Support

outsystems.com X X X X

mendix.com X X X X

appian.com X X X

microsoft.com/
**/power-apps

X X

bettyblocks.com X X X X

CONCLUSIONS
Throughout this paper, we have seen how the evolution of business application development has generated

new technical demands, particularly with regard to the adoption of microservice-based architectures. While this
approach offers substantial benefits such as individualized scalability, system resilience, and greater flexibility
in component implementation, it also introduces a number of complex challenges. Interoperability between
services, the management of different programming languages, the need for robust infrastructure, and the
sophistication of distributed system maintenance represent significant obstacles for development teams.

Faced with this technical complexity, low-code tools are emerging as a strategic solution that seeks to reduce
the operational burden without compromising software quality. By enabling application development through
visual interfaces, predefined graphical elements, and intuitive environments, these platforms democratize
access to distributed system development, even for users with limited technical knowledge. Solutions offered
by companies such as Microsoft, BettyBlocks, or academic platforms based on DSL and drag-and-drop techniques
demonstrate the viability of this trend and its potential impact on the productivity and efficiency of work teams.

The proposal presented in this project is part of this innovative trend, integrating established technologies
such as Java, Spring, PostgreSQL, Docker, and Kubernetes with low-code tools that make it easier to build,
deploy, and integrate microservices. This combination not only simplifies the technical process but also
promotes the creation of scalable and sustainable systems aligned with current market demands.

The comparative analysis carried out between different low-code platforms highlights the strengths and
limitations of existing solutions, underscoring the need to continue developing more comprehensive, flexible,
and microservice-oriented tools. Despite the progress made, challenges remain related to the integration of
standards, performance optimization, and user training in the effective use of these technologies.

Low-code tools represent a valid response to the complexity of modern architectures, offering a bridge
between technical sophistication and the need for agility. The solution proposed in this paper provides a
balanced approach that can contribute significantly to the development of more efficient software that is
accessible and adaptable to the constant changes in the technological environment.

BIBLIOGRAPHICAL REFERENCES
1. Newman S. Building microservices: Designing fine-grained systems. Newton: O’Reilly Media; 2015.

2. Chaudhary HAA, Ahmed T. Integration of micro-services as components in modeling environments for low
code development. ISP RAS. 2021;33(4):19-30. doi:10.15514/ISPRAS-2021-33(4)-2

3. Mozilla Developer Network. CSS. 2023. Available from: https://developer.mozilla.org/es/docs/Glossary/
CSS

4. Spring. Spring Framework. 2024. Available from: https://spring.io/projects/spring-framework

5. Apache Software Foundation. Apache Kafka. 2024. Available from: https://kafka.apache.org/

6. Rock Content. What is Bootstrap? 2020. Available from: https://rockcontent.com/es/blog/bootstrap/

7. IBM. Minio. 2021. Available from: https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-
minio

8. GitHub. About GitHub and Git. 2024. Available from: https://docs.github.com/es/get-started/start-your-

 EthAIca. 2024; 3:147 4

ISSN: 3072-7952

https://developer.mozilla.org/es/docs/Glossary/CSS
https://developer.mozilla.org/es/docs/Glossary/CSS
https://spring.io/projects/spring-framework
https://kafka.apache.org/
https://rockcontent.com/es/blog/bootstrap/
https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio
https://www.ibm.com/docs/es/cloud-private/3.2.x?topic=private-minio
https://docs.github.com/es/get-started/start-your-journey/about-github-and-git

journey/about-github-and-git

9. DigitalOcean. DigitalOcean Managed Kubernetes. 2024. Available from: https://www.digitalocean.com/
products/kubernetes

10. Postman. What is Postman? 2024. Available from: https://www.postman.com/product/what-is-postman/

11. Banco Central de la República Argentina. Cotizaciones por fecha. 2024. Available from: http://www.
bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp

12. Brown T, Smith L. The impact of Low-code platforms and intuitive interfaces on software development
efficiency. Journal of Software Innovation. 2023;18:75-89.

13. Consejo Profesional de Ciencias Informáticas de la Provincia de Córdoba. Honorarios Recomendados.
2024. Available from: https://cpcipc.org.ar/honorarios-recomendados/

14. Elgheriani NS, Ahmed NA. Microservices vs. monolithic architectures. International Journal of Applied
Science and Technology. 2022;4:501-14. doi:10.47832/2717-8234.12.47

15. Misic B, Novkovic M, Ramac R, Mandic V. Do the microservices improve the agility of software development
teams? In: International Scientific Conference on Industrial Systems; 2017. p. 170-5.

16. Schwaber K, Sutherland J. Scrum: The art of doing twice the work in half the time. Houston: Crown
Business; 2010.

17. Trello. Trello Tour. 2023. Available from: https://trello.com/es/tour

FINANCING
None.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHOR CONTRIBUTION
Conceptualization: Tomás Darquier, Pablo Alejandro Virgolini.
Data curation: Tomás Darquier, Pablo Alejandro Virgolini.
Formal analysis: Tomás Darquier, Pablo Alejandro Virgolini.
Research: Tomás Darquier, Pablo Alejandro Virgolini.
Methodology: Tomás Darquier, Pablo Alejandro Virgolini.
Project management: Tomás Darquier, Pablo Alejandro Virgolini.
Resources: Tomás Darquier, Pablo Alejandro Virgolini.
Software: Tomás Darquier, Pablo Alejandro Virgolini.
Supervision: Tomás Darquier, Pablo Alejandro Virgolini.
Validation: Tomás Darquier, Pablo Alejandro Virgolini.
Visualization: Tomás Darquier, Pablo Alejandro Virgolini.
Writing – original draft: Tomás Darquier, Pablo Alejandro Virgolini.
Writing – review and editing: Tomás Darquier, Pablo Alejandro Virgolini.

 5 Darquier T, et al

https://doi.org/10.56294/ai2024147 ISSN: 3072-7952

https://docs.github.com/es/get-started/start-your-journey/about-github-and-git
https://www.digitalocean.com/products/kubernetes
https://www.digitalocean.com/products/kubernetes
https://www.postman.com/product/what-is-postman/
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
http://www.bcra.gob.ar/PublicacionesEstadisticas/Cotizaciones_por_fecha_2.asp
https://cpcipc.org.ar/honorarios-recomendados/
https://trello.com/es/tour

	Marcador 1
	_GoBack

