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ABSTRACT

Algorithmic biases in mental health diagnostic systems represent a critical challenge, particularly for 
vulnerable populations, as they perpetuate inequities in access to and quality of care. This article aims to 
analyze advances and challenges in identifying and mitigating these biases through a documentary review 
of Spanish and English articles indexed in Scopus between 2018 and 2022. The methodology involved a 
systematic analysis of 50 selected studies, classified into four thematic areas: types of algorithmic biases, 
clinical impact on vulnerable populations, technical limitations in algorithm development, and proposed 
mitigation strategies. The results demonstrate that biases are deeply rooted in training data and the unequal 
representation of marginalized groups, leading to less accurate diagnoses for women, racialized communities, 
and low-income individuals. Although technical and ethical approaches have been proposed, gaps persist in 
their practical implementation. The study concludes that without multidisciplinary intervention integrating 
public health, ethics, and data science perspectives, algorithms will continue to reproduce structural 
inequalities. This research underscores the urgency of inclusive policies and robust regulatory frameworks to 
ensure equity in digital mental health.
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RESUMEN

Los sesgos algorítmicos en los sistemas de diagnóstico de salud mental representan un desafío crítico, 
especialmente para poblaciones vulnerables, al perpetuar inequidades en el acceso y la calidad de la 
atención. Este artículo tiene como objetivo analizar los avances y desafíos en la identificación y mitigación 
de estos sesgos, mediante una revisión documental de artículos en español e inglés indexados en Scopus entre 
2018 y 2022. La metodología consistió en un análisis sistemático de 50 estudios seleccionados, clasificados en 
cuatro ejes temáticos: tipos de sesgos algorítmicos, impacto clínico en poblaciones vulnerables, limitaciones 
técnicas en el desarrollo de algoritmos y estrategias de mitigación propuestas. Los resultados evidencian que 
los sesgos están profundamente arraigados en los datos de entrenamiento y en la representación desigual de 
grupos minorizados, lo que deriva en diagnósticos menos precisos para mujeres, comunidades racializadas 
y personas de bajos ingresos. Aunque se han propuesto enfoques técnicos y éticos, persisten brechas en su 
implementación práctica. Se concluye que, sin una intervención multidisciplinar que integre perspectivas de 
salud pública, ética y ciencia de datos, los algoritmos reproducirán desigualdades estructurales. Este estudio 
subraya la urgencia de políticas inclusivas y marcos regulatorios robustos para garantizar equidad en la salud 
mental digital.
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INTRODUCTION 
Artificial intelligence (AI) advances have revolutionized the mental health field by offering promising tools for 

early diagnosis and treatment personalization.(1,2) However, these systems are not without critical limitations, 
particularly about algorithmic biases.(3) These biases arise because machine learning models reflect and amplify 
inequalities present in training data, which can lead to misdiagnosis or depersonalized diagnoses.(4,5) In the 
context of mental health, where conditions are highly subjective and culturally mediated, the impact of these 
biases can be especially harmful.(6)

Algorithmic biases in mental health often manifest in multiple dimensions, including discrimination based 
on gender, ethnicity, socioeconomic status, and geographic location.(7) Authors such as Straw & Callison-Burch(7) 
and Timmons et al.(8) have shown that algorithms trained with predominantly Western data are less accurate 
in diagnosing mental disorders in non-white populations due to differences in symptomatic expression and 
linguistic patterns. Similarly, women and low-income individuals may be misclassified due to stereotypes 
embedded in data sets.(9) These errors perpetuate inequities in health care and reinforce systemic barriers to 
access to appropriate treatment.(10,11)

The problem is exacerbated by the fact that mental health diagnostic algorithms are often developed 
without sufficient representation of vulnerable populations, such as migrants, indigenous communities, or 
people with cognitive disabilities.(12) The lack of diversity in the data leads to these groups receiving less 
accurate or even stigmatizing clinical recommendations.(13) In addition, many models do not incorporate 
intercultural perspectives, ignoring how sociocultural factors influence the perception and manifestation 
of mental disorders.(14) This limits the effectiveness of AI tools and exacerbates mistrust in digitized health 
systems.(7,10)

Despite recent efforts to develop fairer frameworks, such as fairness-aware machine learning techniques 
and algorithmic audits, significant challenges remain in practical implementation. Many technical solutions lack 
adaptability to local contexts or do not consider the power dynamics underlying data collection.(15) Furthermore, 
regulation in this area is nascent, allowing potentially discriminatory algorithms to be implemented without 
sufficient oversight.(16,17) This raises ethical questions about who bears responsibility when an algorithmic 
diagnosis fails and harms a vulnerable patient.

Given the growing adoption of AI in mental health, it is urgent to critically examine the advances and 
challenges in mitigating algorithmic biases, with a special focus on their impact on vulnerable populations. 
This article seeks to contribute to this debate through a literature review of studies published between 2018 
and 2022, analyzing current limitations and proposed strategies to ensure equity in automated diagnosis. The 
objective is to synthesize recent evidence, identify critical gaps, and suggest future directions for developing 
more inclusive and ethical algorithms in mental health.

METHOD
This study is based on a systematic review of the scientific literature on algorithmic biases in mental health 

diagnoses and their impact on vulnerable populations. The review followed a structured approach to ensure 
thoroughness and rigor in the selection, analysis, and synthesis of sources and to identify advances, limitations, 
and mitigation strategies reported in recent studies.(18) The methodological process was carried out in four 
clearly defined stages, which ensured transparent and reproducible data collection.

Definition of search criteria and selection of sources
Specific parameters were established for the collection of literature, including articles published between 

2018 and 2022 in the Scopus and PubMed databases, due to their relevance to biomedical and technological 
research. The search terms combined descriptors such as “algorithmic bias,” “mental health diagnosis,” 
“health disparities,” and “vulnerable populations” in both English and Spanish. Empirical studies, systematic 
reviews, and theoretical articles were included, while non-peer-reviewed works or those without solid scientific 
evidence were excluded.

Filtering and evaluation of study quality
After an initial search yielded 120 documents, filters were applied based on inclusion and exclusion criteria. 

Studies with transparent methodologies, representative samples, and data-supported conclusions were 
prioritized. After evaluating titles, abstracts, and full content, 50 articles that met scientific quality standards 
and thematic relevance were selected.
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Thematic analysis and categorization 
The selected documents were analyzed using a content analysis approach, identifying patterns and 

divergences around four main themes: types of algorithmic biases, impact on vulnerable populations, technical 
limitations, and proposed mitigation strategies. This process allowed for a structured organization of the 
evidence and facilitated the identification of trends and gaps in the literature.

Synthesis and critical interpretation
Finally, the findings were integrated into a coherent discussion contrasting theoretical, technical, and 

ethical perspectives. The practical implications of the identified biases were evaluated, and recommendations 
for future research and public policy interventions were proposed.

This methodological approach provided a comprehensive understanding of the current research on 
algorithmic biases in mental health, offering a solid foundation for critical analysis and identifying remaining 
challenges.(19,20) The rigor at each stage ensured that the results reflected established trends in the literature 
while highlighting priority areas for action. 

RESULTS
An initial literature review showed that artificial intelligence systems applied to mental health diagnosis 

have demonstrated the potential to improve the accessibility and efficiency of clinical care. However, it was 
also identified that these systems reproduce and amplify structural inequalities, especially in vulnerable 
populations, due to intrinsic biases in their designs and training data. The studies analyzed highlight four critical 
dimensions: the most prevalent types of algorithmic biases, their disproportionate impact on marginalized 
groups, the technical limitations perpetuating these problems, and the strategies to mitigate them. These 
themes allowed us to organize the qualitative analysis by articulating theoretical and empirical findings to offer 
a comprehensive view of the challenge. Each of these themes is discussed below.

Types of Algorithmic Biases in Mental Health
Algorithmic biases in mental health diagnoses manifest in multiple ways, affecting the accuracy and 

fairness of AI tools (see figure 1).(21) One of the most documented is ethnic-racial bias, where algorithms trained 
with data mostly from white Western populations are less accurate when assessing symptoms in racialized 
groups.(22,23) In this regard, Hooker et al.(24) demonstrate that models for detecting depression underestimate 
its prevalence in African American and Hispanic communities due to cultural differences in the expression of 
psychological distress.

Figure 1. Impact of algorithmic biases in medicine Impact on Vulnerable Populations
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Another critical type is gender bias, which arises when algorithms associate stereotypes with diagnoses.(13) 
Sedgewick et al.(25) reveal that AI systems tend to overdiagnose anxiety disorders in women and underestimate 
conditions such as autism in them. Similarly, socioeconomic bias is reflected in the lack of representative 
data on low-income individuals, leading to symptoms associated with poverty (such as chronic stress) being 
misinterpreted as individual pathologies.(26)

In addition, geographical biases persist, where tools designed in high-income countries fail when applied 
in contexts with linguistic diversity or limited access to health services.(27) A case in point is algorithms that 
analyze natural language. When trained with English texts, they ignore idiomatic expressions or grammatical 
constructions specific to other languages, which affects their cross-cultural validity.(28)

Impact on Vulnerable Populations
Algorithmic biases have serious consequences for historically marginalized groups (see figure 2), exacerbating 

mental health inequalities.(29,30) In indigenous communities, AI tools often overlook cultural manifestations of 
psychological distress, leading to misdiagnosis or the invisibility of real needs.(31)

Figure 2. Impact of algorithmic biases on vulnerable populations

LGBTQ+ people also face unique risks. Algorithms trained with heteronormative data can pathologize 
non-binary identities or interpret gender dysphoria as psychotic disorders.(32) One study found that mental 
health chatbots displayed invalidating responses to users who mentioned their sexual orientation, reinforcing 
stigmas.(33)

 Another affected group is migrants and refugees, whose experiences of trauma are often medicalized 
by algorithms without considering sociopolitical contexts.(34) Finally, older adults and people with cognitive 
disabilities face barriers due to designs that do not incorporate their needs.(35,36) Complex interfaces or 
assessments based on written language exclude those with visual or cognitive limitations, further marginalizing 
them.(37)

Technical and Structural Limitations 
The perpetuation of biases is not only a problem of insufficient data, but also of deep limitations in the 

development and deployment of algorithms (see figure 3).(37) A key barrier is the homogeneity of data sets, 
where vulnerable populations are underrepresented.(8,38)

 Another limitation is the lack of transparency in proprietary models. Many medical technology companies 
do not disclose how their algorithms are trained, making independent audits impossible.(39) 

Moreover, challenges persist in clinical interpretation. Mental health professionals often lack training to 
question algorithmic results, accepting them as objective.(21) This is dangerous because algorithms reinforce 
stereotypes, such as associating poverty with lower treatment adherence.(40) These limitations, in the author’s 
opinion, reveal that biases are systemic, requiring technical adjustments as well as changes in regulatory 
frameworks and data governance.
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Figure 3. Ethical and structural limitations

Proposed Mitigation Strategies
The reviewed literature suggests multiple approaches to reduce biases, although their implementation 

remains in early stages (see figure 4).(41,42) One promising direction is fairness-aware machine learning, which 
incorporates equity metrics during model training.(43) Techniques such as reweighting and adversarial debiasing 
have improved accuracy for underrepresented groups.(44)

Mandatory algorithmic audits stand out at the institutional level, requiring assessments of their impact on 
fundamental rights.(45,46) Existing ethical frameworks can also be adapted to address the new challenges posed 
by AI in mental health diagnosis, and practical recommendations are provided for health professionals.(47)

However, the author’s opinion is that challenges remain in the scalability of these solutions and the political 
will to adopt them. In addition to technical innovation, algorithmic justice in mental health will require a 
redistribution of power in producing medical knowledge.

Figure 4. Strategies for mitigating bias
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DISCUSSION 
The findings of this review reveal that biases in AI-based diagnostic systems are not mere technical flaws 

but manifestations of structural inequalities deeply rooted in data and algorithmic designs.(23,26) Evidence 
shows that these biases operate differentially, affecting historically marginalized groups more severely and 
reproducing patterns of exclusion in access to mental health care.(48) This poses an urgent ethical challenge: 
the need to recognize that the objectivity of algorithms is, in reality, a mirror of the prejudices that exist 
in the societies that create them.(25) The solution cannot be limited to superficial technical adjustments but 
requires a fundamental questioning of who participates in developing these technologies and whose voices are 
systematically silenced in the process.

A critical issue that emerges from the literature is the tension between the democratizing potential of AI 
and its ability to amplify inequalities.(49) While these tools promise to expand access to diagnostics in regions 
with a shortage of specialists, their implementation without adequate safeguards can perpetuate forms of 
digital colonialism, where vulnerable populations are subject to systems they do not understand or control.(31) 
This problem is exacerbated by the commercialization of opaque algorithms, whose internal mechanisms are 
inaccessible to healthcare professionals and patients.(12,33) The lack of transparency limits accountability and 
erodes trust in interventions that, paradoxically, seek to improve mental health care.(50)

The mitigation strategies analyzed, while promising, face significant barriers to real-world implementation. 
Initiatives such as fairness-by-design frameworks and participatory audits represent significant advances, but 
they clash with commercial interests, budgetary constraints, and the absence of robust regulatory frameworks.
(38,46) In addition, there remains a disconnect between the technical solutions proposed and the specific needs of 
local contexts, particularly in low- and middle-income countries. This underscores the importance of developing 
glocal approaches that combine international standards with culturally situated adaptations, avoiding universal 
solutions that ignore the particularities of the health systems and communities they serve.(37)

Finally, this review highlights that the fight against algorithmic bias in mental health requires collective and 
multidisciplinary action. Researchers, clinicians, policymakers, and affected communities must collaborate to 
create ethical AI ecosystems prioritizing justice over efficiency.(46,47) This involves improving algorithms and 
transforming the power structures that determine what knowledge is validated and which populations are 
considered a priority.(4) The path to truly equitable algorithmic diagnoses will require, above all, recognizing 
that mental health technology is not neutral: it is a battleground where competing visions of who deserves to 
be heard and what forms of suffering are legitimate are being fought out.

CONCLUSIONS 
This literature review shows that algorithmic biases in mental health diagnostic systems reproduce and 

amplify structural inequalities by disproportionately affecting vulnerable populations. While technical and 
ethical strategies have been identified to mitigate these biases, their practical implementation requires a 
multidisciplinary approach combining artificial intelligence advances with inclusive public policies, community 
participation, and robust regulatory frameworks. Ensuring equity in automated diagnosis is not only a 
technological challenge but an ethical imperative that requires transforming mental health systems to prioritize 
social justice over algorithmic efficiency.

Overcoming these challenges requires active collaboration between developers, health professionals, 
policymakers, and affected communities to create tools that are not only accurate but also culturally sensitive 
and socially responsible. Only through this collective commitment can the transformative potential of AI 
in mental health be realized, ensuring that its application benefits all groups equally without exacerbating 
existing inequalities.
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