AI in Anesthesia: Enhancing Safety Through Ethical Integration   and Human Supervision -A Narrative Review

Authors

DOI:

https://doi.org/10.56294/ai2025414

Keywords:

Artificial Intelligence (AI), Anesthesia, Ethical concerns, Human critical thinking

Abstract

Introduction: Anesthesia has evolved from enormously from mysterious sleep to intelligent, personalized care and as Artificial intelligence (AI) has led to transformation of healthcare, its applications in anesthesia too has proven of late that how technology and human compassion working together can be smoother, personalized, safer and precise surgical journeys for patients. The AI is field of computer science which use various algorithms and computational resources enabling the machines to simulate human intelligence in its thought process and actions. This revolutionary technology is changing the traditional anesthesia practices of patient risk stratification, anesthesia delivery system, patient peri-operative monitoring, individualized anesthesia plans and image analysis by an automated process. However, the application of AI in anesthesia comes with its own unique limitations of limited data and its quality, lack of guidelines for ethical use, legal concerns and socioeconomic concerns. Therefore, in this review we searched human in loop approach of the hybrid models, as the future of anesthesia will likely to be shaped by a combination of artificial intelligence and human expertise rather than one replacing other. 
Methods: We searched PubMed, google scholar and Cochrane database search 2019-2024. The evaluation of the retrieved articles was done for effectiveness as well as limitations of AI and deep learning in the field of anesthesia.
Results: The AI will enhance precision, safety and efficiency but human touch of anesthesiologist and ethical use of it will remain essential for decision making, handling complications and providing personalized empathic care. Nonetheless, its effectiveness is influenced by data quality, algorithm generalizability and the absence of standardized ethical frameworks.
Conclusion: The future of anaesthesia will likely combine AI’s analytical power with anaesthetist’s expertise, ethical judgement and empathy. While AI can improve outcomes and efficiency, the human touch remains essential for decision making, complication management and personalised care.

References

1. Shukla A, Salma A, Patel D, John JD, Kantamneni R, Patel T, Kantamaneni K. Harnessing Artificial Intelligence (AI) in Anaesthesiology: Enhancing Patient Outcomes and Clinical Efficiency. Cureus [Internet]. 2024 Nov 10 [cited 2025 Aug 09];16(11). Available in: https://doi.org/10.7759/cureus.75291

2. Singhal M, Gupta L, Hirani K. A comprehensive analysis and review of artificial intelligence in anaesthesia. Cureus [Internet]. 2023 Sep 11 [cited 2025 Aug 09];15(9). Available in: https://doi.org/10.7759/cureus.45105

3. Xie BH, Li TT, Ma FT, Li QJ, Xiao QX, Xiong LL, Liu F. Artificial intelligence in anesthesiology: a bibliometric analysis. Perioper Med [Internet]. 2024 Dec 23 [cited 2025 Aug 09];13(1):121. Available in: https://doi.org/10.1186/s13741-024-00394-3

4. Singh M, Nath G. Artificial intelligence and anesthesia: A narrative review. Saudi J Anaesth [Internet]. 2022 Jan 1 [cited 2025 Aug 09];16(1):86–93. Available in: https://doi.org/10.4103/sja.sja_925_21

5. Zhang Z, Duan Y, Lin J, Luo W, Lin L, Gao Z. Artificial intelligence in anesthesia: insights from the 2024 Nobel Prize in Physics. Anesthesiol Perioper Sci [Internet]. 2025 Feb 10 [cited 2025 Aug 09];3(1):5. Available in: https://doi.org/10.1007/s44254-024-00069-0

6. Cascella M, Montomoli J, Bellini V, Ottaiano A, Santorsola M, Perri F, Sabbatino F, Vittori A, Bignami EG. Writing the paper “Unveiling artificial intelligence: an insight into ethics and applications in anesthesia” implementing the large language model ChatGPT: a qualitative study. J Med Artif Intell [Internet]. 2023 Jun 30 [cited 2025 Aug 09];6. Available in: https://doi.org/10.21037/jmai-23-4

7. Kempthorne P, Morriss WW, Mellin-Olsen J, Gore-Booth J. The World Federation of Societies of Anaesthesiologists workforce survey. Anaesthesia [Internet]. 2017 Jun [cited 2025 Aug 09];72(6):712–22. Available in: https://doi.org/10.1111/anae.13807

8. Bajwa SJ, Bajwa SK, Kaur J, Singh A, Singh A, Goraya S, Singh M, Parmar SS. Perioperative and anesthesia-related mortality in developing nations: A perspective from India. Anesth Essays Res [Internet]. 2017 Apr–Jun [cited 2025 Aug 09];11(2):296–301. Available in: https://doi.org/10.4103/aer.AER_45_17

9. Jauk S, Kramer D, Stark G, Hasiba K, Leodolter W, Schulz S, Kainz J. Development of a machine learning model predicting an ICU admission for patients with elective surgery and its prospective validation in clinical practice. In: MEDINFO 2019: Health and Wellbeing e-Networks for All. Amsterdam: IOS Press; 2019. p. 173–7. Available in: https://doi.org/10.3233/SHTI190160

10. Lee HC, Ryu HG, Chung EJ, Jung CW. Prediction of bispectral index during target-controlled infusion of propofol and remifentanil. Anesthesiology [Internet]. 2018 Mar 1 [cited 2025 Aug 09];128(3):492–501. Available in: https://doi.org/10.1097/ALN.0000000000001986

11. Afshar S, Boostani R, Sanei S. A combinatorial deep learning structure for precise depth of anesthesia estimation from EEG signals. IEEE J Biomed Health Inform [Internet]. 2021 Mar 24 [Accessed: DD/MM/YYYY];25(9):3408–15. Available in: https://doi.org/10.1109/JBHI.2021.3068621

12. Cascella M, Schiavo D, Cuomo A, Ottaiano A, Perri F, Patrone R, et al. Artificial intelligence for automatic pain assessment: research methods and perspectives. Pain Res Manag [Internet]. 2023 [Accessed: DD/MM/YYYY];2023(1):6018736. Available in: https://doi.org/10.1155/2023/6018736

13. Bowness JS, Metcalfe D, El-Boghdadly K, Thurley N, Morecroft M, Hartley T, et al. Artificial intelligence for ultrasound scanning in regional anaesthesia: a scoping review of the evidence from multiple disciplines. Br J Anaesth [Internet]. 2024 Mar 5 [Accessed: DD/MM/YYYY]. Available in: https://doi.org/10.1016/j.bja.2024.02.018

14. Bogoń A, Górska M, Ostojska M, Kałuża I, Dziuba G, Dobosz M. Artificial intelligence in anesthesiology—a review. J Pre-Clin Clin Res [Internet]. 2024 Jul 1 [Accessed: DD/MM/YYYY];18(3). Available in: https://doi.org/10.26444/jpccr/176726

15. Reddy S, Fox J, Purohit MP. Artificial intelligence-enabled healthcare delivery. J R Soc Med [Internet]. 2019 Jan [Accessed: DD/MM/YYYY];112(1):22–8. Available in: https://doi.org/10.1177/0141076818815510

16. Shen Y, Zhang X. The impact of artificial intelligence on employment: the role of virtual agglomeration. Humanit Soc Sci Commun [Internet]. 2024 [Accessed: DD/MM/YYYY];11:122. Available in: https://doi.org/10.1057/s41599-024-02647-9

17. McClelland C. The impact of artificial intelligence–widespread job losses. IT for All [Internet]. 2020 Jul [Accessed: DD/MM/YYYY];1. Available in: https://itforall.org/the-impact-of-artificial-intelligence-widespread-job-losses/

18. Subaveerapandiyan A, Shimray SR. The evolution of job displacement in the age of AI and automation: a bibliometric review (1984–2024). Open Inf Sci [Internet]. 2024 [Accessed: DD/MM/YYYY];8(1):20240010. Available in: https://doi.org/10.1515/opis-2024-0010

19. Song B, Zhou M, Zhu J. Necessity and importance of developing AI in anesthesia from the perspective of clinical safety and information security. Med Sci Monit [Internet]. 2023 Feb 22 [Accessed: DD/MM/YYYY];29:e938835. Available in: https://doi.org/10.12659/MSM.938835

20. Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia [Internet]. 1998 Apr [Accessed: DD/MM/YYYY];53 Suppl 1:13–21. Available in: https://doi.org/10.1111/j.1365-2044.1998.53s115.x

21. Langeron O, Castoldi N, Rognon N, Baillard C, Samama CM. How anesthesiology can deal with innovation and new technologies?. Minerva Anestesiol [Internet]. 2024 [cited 09 Aug 2025];90(1-2):68-76. Available in: https://doi.org/10.23736/S0375-9393.24.17163-3

22. Malviya AK. Artificial Intelligence and Machine Learning in Anesthesia: Applications and Ethical Considerations. Natl Board Exam J Med Sci [Internet]. 2024 [cited 09 Aug 2025];2:S52-S59. Available in: https://doi.org/10.61770/NBEJMS.2024.v02.i11.S07

23. Solanki SL, Pandrowala S, Nayak A, Bhandare M, Ambulkar RP, Shrikhande SV. Artificial intelligence in perioperative management of major gastrointestinal surgeries. World J Gastroenterol [Internet]. 2021 [cited 09 Aug 2025];27(21):2758-2770. Available in: https://doi.org/10.3748/wjg.v27.i21.2758

24. Tavolara TE, Gurcan MN, Segal S, Niazi MK. Identification of difficult to intubate patients from frontal face images using an ensemble of deep learning models. Comput Biol Med [Internet]. 2021 [cited 09 Aug 2025];136:104737. Available in: https://doi.org/10.1016/j.compbiomed.2021.104737

25. Kim JH, Kim H, Jang JS, Hwang SM, Lim SY, Lee JJ, Kwon YS. Development and validation of a difficult laryngoscopy prediction model using machine learning of neck circumference and thyromental height. BMC Anesthesiol [Internet]. 2021 [cited 09 Aug 2025];21:111. Available in: https://doi.org/10.1186/s12871-021-01288-8

26. Moulton C, Kessler C. AI-enhanced risk stratification: Moving beyond the ASA Physical Status Classification System. Anesth Analg [Internet]. 2022 [cited 09 Aug 2025];135(4):812-819. Available in: https://doi.org/10.1213/ANE.0000000000006011

27. Brennan M, Puri S, Ozrazgat-Baslanti T, Feng Z, Ruppert M, Hashemighouchani H, et al. Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: A pilot usability study. Surgery [Internet]. 2019 [cited 09 Aug 2025];165(5):1035-1045. Available in: https://doi.org/10.1016/j.surg.2019.01.002

28. Zhang L, Fabbri D, Lasko TA, Ehrenfeld JM, Wanderer JP. A system for automated determination of perioperative patient acuity. J Med Syst [Internet]. 2018 [cited 09 Aug 2025];42:111. Available in: https://doi.org/10.1007/s10916-018-0940-4

29. Hofer IS, Lee C, Gabel E, Baldi P, Cannesson M. Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set. NPJ Digit Med [Internet]. 2020 [cited 09 Aug 2025];3:58. Available in: https://doi.org/10.1038/s41746-020-0266-1

30. Kendale S, Kulkarni P, Rosenberg AD, Wang J. Supervised machine-learning predictive analytics for prediction of postinduction hypotension. Anesthesiology [Internet]. 2018 [cited 09 Aug 2025];129(4):675-688. Available in: https://doi.org/10.1097/ALN.0000000000002354

31. Muravchick S, Caldwell JE, Epstein RH, Galati M, Levy WJ, O’Reilly M, et al. Anesthesia information management system implementation: a practical guide. Anesth Analg [Internet]. 2008 Nov [Accessed: 09/08/2025];107(5):1598–608. Available in: https://doi.org/10.1213/ane.0b013e3181871317

32. Vigoda MM, Gencorelli F, Lubarsky DA. Changing medical group behaviors: increasing the rate of documentation of quality assurance events using an anesthesia information system. Anesth Analg [Internet]. 2006 Aug [Accessed: 09/08/2025];103(2):390–5. Available in: https://doi.org/10.1213/01.ane.0000223473.70927.bd

33. Spring SF, Sandberg WS, Anupama S, Walsh JL, Driscoll WD, Raines DE. Automated documentation error detection and notification improves anesthesia billing performance. Anesthesiology [Internet]. 2007 Jan [Accessed: 09/08/2025];106(1):157–63. Available in: https://doi.org/10.1097/00000542-200701000-00026

34. Weller J, Wilson L, Robinson B. Survey of change in practice following simulation-based training in crisis management. Anaesthesia [Internet]. 2003 May [Accessed: 09/08/2025];58(5):471–3. Available in: https://doi.org/10.1046/j.1365-2044.2003.03078_1.x

35. Vidhya KS, Sultana A, Kumar N, Rangareddy H, Vidhya KS, Madalageri NK. Artificial intelligence’s impact on drug discovery and development from bench to bedside. Cureus [Internet]. 2023 Oct 22 [Accessed: 09/08/2025];15(10):e. Available in: https://doi.org/10.7759/cureus.46652

36. Syrowatka A, Song W, Amato MG, Foer D, Edrees H, Kuznetsova M, et al. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: a scoping review. Lancet Digit Health [Internet]. 2022 Feb [Accessed: 09/08/2025];4(2):e137–48. Available in: https://doi.org/10.1016/S2589-7500(21)00208-1

37. Glen JB. The development of ‘Diprifusor’: a TCI system for propofol. Anaesthesia [Internet]. 1998 Apr [Accessed: 09/08/2025];53(Suppl 1):13–21. Available in: https://doi.org/10.1046/j.1365-2044.1998.0530s1013.x

38. Liberman MY, Ching S, Chemali J, Brown EN. A closed-loop anesthetic delivery system for real-time control of burst suppression. J Neural Eng [Internet]. 2013 Jun 7 [Accessed: 09/08/2025];10(4):046004. Available in: https://doi.org/10.1088/1741-2560/10/4/046004

39. Bellini V, Valente M, Bertorelli G, Pifferi B, Craca M, Mordonini M, et al. Machine learning in perioperative medicine: a systematic review. J Anesth Analg Crit Care [Internet]. 2022 Jan 15 [Accessed: 09/08/2025];2(1):2. Available in: https://doi.org/10.1186/s44158-021-00022-4

40. Wehbe M, Arbeid E, Cyr S, Mathieu PA, Taddei R, Morse J, et al. A technical description of a novel pharmacological anesthesia robot. J Clin Monit Comput [Internet]. 2014 Feb [Accessed: 09/08/2025];28:27–34. Available in: https://doi.org/10.1007/s10877-013-9487-2

41. Goudra BG, Singh PM, Chandrasekhara V. SEDASYS®, airway, oxygenation, and ventilation: anticipating and managing the challenges. Dig Dis Sci [Internet]. 2014 May [Accessed: 09/08/2025];59:920–7. Available in: https://doi.org/10.1007/s10620-013-3003-

42. Wingert T, Lee C, Cannesson M. Machine learning, deep learning, and closed loop devices—anesthesia delivery. Anesthesiol Clin [Internet]. 2021 Sep [Accessed: 09/08/2025];39(3):565–81. Available in: https://doi.org/10.1016/j.anclin.2021.03.012

43. Knudsen JE, Ghaffar U, Ma R, Hung AJ. Clinical applications of artificial intelligence in robotic surgery. J Robot Surg [Internet]. 2024 Mar 1 [Accessed: 09/08/2025];18(1):102. Available in: https://doi.org/10.1007/s11701-024-01867-0

44. Hemmerling TM, Wehbe M, Zaouter C, Taddei R, Morse J. The Kepler intubation system. Anesth Analg [Internet]. 2012 Mar 1 [Accessed: 09/08/2025];114(3):590–4. Available in: https://doi.org/10.1213/ANE.0b013e318240a3dc

45. Biro P, Hofmann P, Gage D, Boehler Q, Chautems C, Braun J, et al. Automated tracheal intubation in an airway manikin using a robotic endoscope: a proof of concept study. Anaesthesia [Internet]. 2020 Jul [Accessed: 09/08/2025];75(7):881–6. Available in: https://doi.org/10.1111/anae.15039

46. Ma X, Pan B, Song T, Sun Y, Fu Y. Development of a novel anesthesia airway management robot. Sensors (Basel) [Internet]. 2021 Dec [Accessed: 09/08/2025];21(23):8144. Available in: https://doi.org/10.3390/s21238144

47. Bodhey A, Nair A, Seelam S. SAFIRA pump: a novel device for fixed injection pressure and to control local anesthetic injection during peripheral nerve block. J Anaesthesiol Clin Pharmacol [Internet]. 2023 Jan 1 [Accessed: 09/08/2025];39(1):146–7. Available in: https://doi.org/10.4103/joacp.joacp_479_21

48. Hemmerling TM, Taddei R, Wehbe M, Cyr S, Zaouter C, Morse J. First robotic ultrasound-guided nerve blocks in humans using the Magellan system. Anesth Analg [Internet]. 2013 Feb 1 [Accessed: 09/08/2025];116(2):491–4. Available in: https://doi.org/10.1213/ANE.0b013e318273f33a

49. Bowness JS, James K, Yarlett L, Htyn M, Fisher E, Cassidy S, et al. Assistive artificial intelligence for enhanced patient access to ultrasound-guided regional anaesthesia. Br J Anaesth [Internet]. 2024 May 1 [Accessed: 09/08/2025];132(5):1173–5. Available in: https://doi.org/10.1016/j.bja.2024.01.039

50. Zhang L, Fabbri D, Lasko TA, Ehrenfeld JM, Wanderer JP. A system for automated determination of perioperative patient acuity. J Med Syst [Internet]. 2018 Jul [Accessed: 09/08/2025];42(7):123. Available in: https://doi.org/10.1007/s10916-018-0953-4

51. Huo J, Yu Y, Lin W, Hu A, Wu C. Application of AI in multilevel pain assessment using facial images: systematic review and meta-analysis. J Med Internet Res [Internet]. 2024 Apr 12 [Accessed: 09/08/2025];26:e51250. Available in: https://doi.org/10.2196/51250.

Downloads

Published

2025-08-13

Issue

Section

Review

How to Cite

1.
Gurnal P, Rana L. AI in Anesthesia: Enhancing Safety Through Ethical Integration   and Human Supervision -A Narrative Review. EthAIca [Internet]. 2025 Aug. 13 [cited 2025 Sep. 5];4:414. Available from: https://ai.ageditor.ar/index.php/ai/article/view/414