Interplay of AI Literacy, Readiness-Confidence, and Acceptance among Pre-Service Teachers in Philippine Higher Education: A Gender, Discipline, and Connectivity Perspective
DOI:
https://doi.org/10.56294/ai2025429Keywords:
AI literacy, readiness-confidence, acceptance, preservice teachers, gender difference, academic discipline, internet connectivityAbstract
This study explores the role of artificial intelligence (AI) in teacher education, focusing on preservice teachers’ preparedness for AI integration. It examined the levels of AI literacy, readiness-confidence, and acceptance among preservice teachers in Philippine higher education institutions, and investigated differences across gender, academic discipline, and internet connectivity. Using a cross-sectional survey design, data were collected from 384 preservice teachers through validated instruments that measured AI literacy, readiness-confidence, and acceptance. Analyses included descriptive statistics, independent samples t-tests, and correlation analysis. Findings revealed high readiness-confidence and moderate to high literacy and acceptance levels. Significant differences emerged, with male preservice teachers, STEM students, and those with reliable internet access reporting higher scores, particularly in readiness-confidence. Strong positive correlations among literacy, readiness-confidence, and acceptance underscored their interdependent relationship in shaping preparedness for AI integration. These results emphasize the need for tailored and inclusive AI education and training programs that address demographic and infrastructural disparities. Beyond equipping preservice teachers with skills, preparing them for AI adoption is about shaping the future of education by ensuring that tomorrow’s classrooms are led by educators who are competent, confident, and capable of driving innovation, equity, and progress in a rapidly evolving digital age.
References
1. Cabato JU. From awareness to practice: Exploring the knowledge, attitudes, and practices of secondary ESL teachers in the Philippines toward ChatGPT in education. LatIA. 2025; 3:360. https://doi.org/10.62486/latia2025360 DOI: https://doi.org/10.62486/latia2025360
2. Celik I, Dindar M, Muukkonen H, Järvelä S. The promises and challenges of artificial intelligence for educators: A systematic review of research. TechTrends. 2022;66(4):616–30. https://doi.org/10.1007/s11528-022-00715-y DOI: https://doi.org/10.1007/s11528-022-00715-y
3. Gapol PAM, Alieto EO, Capacio EA, Dumagay AH, Francisco CI, Vallejo RG. Preservice teachers’ extent of knowledge and willingness to adopt generative AI in higher education. In: González Vallejo R, Moukhliss G, Schaeffer E, Paliktzoglou V, editors. The Second International Symposium on Generative AI and Education (ISGAIE’2025). Lecture Notes on Data Engineering and Communications Technologies. Vol. 262. Cham: Springer; 2025. https://doi.org/10.1007/978-3-031-98476-1_6 DOI: https://doi.org/10.1007/978-3-031-98476-1_6
4. Hopcan S, Türkmen G, Polat E. Exploring the artificial intelligence anxiety and machine learning attitudes of teacher candidates. Educ Inf Technol. 2024; 29:7281–7301. https://doi.org/10.1007/s10639-023-12086-9 DOI: https://doi.org/10.1007/s10639-023-12086-9
5. Zawacki-Richter, O., Marin, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(39), 1-27. https://doi.org/10.1186/s41239 DOI: https://doi.org/10.1186/s41239-019-0171-0
6. Balasa KA, Dumagay AH, Alieto EO, Vallejo RG. Gender and age dynamics in future educators’ attitudes toward AI integration in education: a sample from state managed universities in Zamboanga Peninsula, Philippines. Semin Med Writ Educ. 2025; 4:668. https://doi.org/10.56294/mw2025668 DOI: https://doi.org/10.56294/mw2025668
7. Funa A, Gabay RA. Policy guidelines and recommendations on AI use in teaching and learning: A meta synthesis study. Soc Sci Humanit Open. 2025; 11:101221. https://doi.org/10.1016/j.ssaho.2024.101221 DOI: https://doi.org/10.1016/j.ssaho.2024.101221
8. Gregorio TAD, Alieto EO, Natividad ERR, Tanpoco MR. Are preservice teachers “totally PACKaged”? A quantitative study of pre-service teachers’ knowledge and skills to ethically integrate Artificial Intelligence (AI)-based tools into Education. In: International Conference on Digital Technologies and Applications. Cham: Springer Nature Switzerland; 2024. p. 45–55. https://doi.org/10.1007/978-3-031-68660-3_5 DOI: https://doi.org/10.1007/978-3-031-68660-3_5
9. Ayanwale MA, Sanusi IT, Adelana OP, Aruleba KD, Oyelere SS. Teachers’ readiness and intention to teach artificial intelligence in schools. Comput Educ Artif Intell. 2022; 3:100099. https://doi.org/10.1016/j.caeai.2022.100099 DOI: https://doi.org/10.1016/j.caeai.2022.100099
10. Dumagay, A. H., Balasa, K. A., Kunting, A. F., & Cabangcala, R. B. (2025). AI acceptance among prospective social studies and culture and arts education students. In K. Arai (Ed.), Intelligent computing. CompCom 2025 (Lecture Notes in Networks and Systems, Vol. 1426). Springer. https://doi.org/10.1007/978-3-031-92611-2_11 DOI: https://doi.org/10.1007/978-3-031-92611-2_11
11. Long D, Magerko B. What is AI literacy? Competencies and design considerations. Proc 2020 CHI Conf Hum Factors Comput Syst. 2020:1–16. https://doi.org/10.1145/3313831.3376727 DOI: https://doi.org/10.1145/3313831.3376727
12. Serdenia JR, Dumagay AH, Balasa KA, Capacio EA, Lauzon LDS. Attitude, acceptability, and perceived effectiveness of artificial intelligence in education: A quantitative cross-sectional study among future teachers. LatIA. 2025; 3:313 DOI: https://doi.org/10.62486/latia2025313
13. Casal-Otero L, Catala A, Fernández-Morante C, Taboada M, Cebreiro B, Barro S. AI literacy in K-12: A systematic literature review. Int J STEM Educ. 2023;10(1):29. https://doi.org/10.1186/s40594-023-00418-7 DOI: https://doi.org/10.1186/s40594-023-00418-7
14. Lumanlan J, Ayson MR, Bautista MJ, Dizon J, Ylarde CM. AI literacy among preservice teachers: Inputs towards a relevant teacher education curriculum. Int J Multidiscip Educ Res Innov. 2025;3(1):242-53.
15. Zhang H, Lee I, Ali S, DiPaola D, Cheng Y, Breazeal C. Integrating ethics and career futures with technical learning to promote AI literacy for middle school students: An exploratory study. Int J Artif Intell Educ. 2023;33(2):290–324. https://doi.org/10.1007/s40593-022-00293-3 DOI: https://doi.org/10.1007/s40593-022-00293-3
16. Alieto E, Abequibel-Encarnacion B, Estigoy E, Balasa K, Eijansantos A, Torres-Toukoumidis A. Teaching inside a digital classroom: A quantitative analysis of attitude, technological competence and access among teachers across subject disciplines. Heliyon. 2024;10(2): e24282. doi: 10.1016/j.heliyon. 2024.e24282 DOI: https://doi.org/10.1016/j.heliyon.2024.e24282
17. Alieto EO, Dumagay AH, Serdenia JRC, Labad EM, Galang SK, Vallejo RG. Attitude toward artificial intelligence among teacher aspirants in an emerging AI landscape: A gender-based analysis. In: González Vallejo R, Moukhliss G, Schaeffer E, Paliktzoglou V, editors. The Second International Symposium on Generative AI and Education (ISGAIE’2025). Lecture Notes on Data Engineering and Communications Technologies, vol. 262. Cham: Springer; 2025. https://doi.org/10.1007/978-3-031-98476-1_39 DOI: https://doi.org/10.1007/978-3-031-98476-1_39
18. Francisco CI, Pantaleon CE, Lantaya GMA, Francisco WAR, Alieto EO. Understanding the attitude of senior high school students toward utilizing ChatGPT as a learning tool: A quantitative analysis. In: Sustainable Data Management: Navigating Big Data, Communication Technology, and Business Digital Leadership. Vol. 1. Cham: Springer Nature Switzerland; 2025. p. 37-49. https://doi.org/10.1007/978-3-031-83911-5_4 DOI: https://doi.org/10.1007/978-3-031-83911-5_4
19. Lucas M, Bem-haja P, Zhang Y, Llorente-Cejudo C, Palacios-Rodríguez A. A comparative analysis of pre-service teachers’ readiness for AI integration. Comput Educ Artif Intell. 2025;6:100396. https://doi.org/10.1016/j.caeai.2025.100396 DOI: https://doi.org/10.1016/j.caeai.2025.100396
20. Zhang C, Schießl J, Plößl L, Hofmann F, Gläser-Zikuda M. Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. Int J Educ Technol High Educ. 2023;20:49. https://doi.org/10.1186/s41239-023-00420-7 DOI: https://doi.org/10.1186/s41239-023-00420-7
21. Ayanwale MA, Frimpong EK, Opesemowo OAG, Sanusi IT. Exploring factors that support pre-pre-service teachers’ engagement in learning artificial intelligence. J STEM Educ Res. 2025;8(2):199-229. https://doi.org/10.1007/s41979-024-00121-4 DOI: https://doi.org/10.1007/s41979-024-00121-4
22. Dai Y, Chai CS, Lin PY, Jong MSY, Guo Y, Qin J. Promoting students’ well-being by developing their readiness for the artificial intelligence age. Sustainability. 2020;12(16):6597. https://doi.org/10.3390/su12166597 DOI: https://doi.org/10.3390/su12166597
23. Ayanwale MA, Owolabi PA, Molefi RR, Adeeko O, Ishola AM. Examining artificial intelligence literacy among pre-pre-service teachers for future classrooms. Comput Educ Open. 2024; 6:100179. https://doi.org/10.1016/j.caeo.2024.100179 DOI: https://doi.org/10.1016/j.caeo.2024.100179
24. Jia K, Leung TH, Cheung NYI, Li Y, Yu J. Developing a holistic AI literacy framework for children. ACM Trans Comput Educ. 2025;25(2):1-30. https://doi.org/10.1145/3727986 DOI: https://doi.org/10.1145/3727986
25. Pei B, Lu J, Jing X. Empowering preservice teachers’ AI literacy: Current understanding, influential factors, and strategies for improvement. Comput Educ Artif Intell. 2025;8:100406. https://doi.org/10.1016/j.caeai.2025.100406 DOI: https://doi.org/10.1016/j.caeai.2025.100406
26. Abdulayeva A, Zhanatbekova N, Andasbayev Y, Boribekova F. Fostering AI literacy in pre-service physics teachers: Inputs from training and co-variables. Front Educ. 2025;10:1505420. https://doi.org/10.3389/feduc.2025.1505420 DOI: https://doi.org/10.3389/feduc.2025.1505420
27. Kohnke L, Zou D, Ou AW, Gu MM. Preparing future educators for AI-enhanced classrooms: Insights into AI literacy and integration. Comput Educ Artif Intell. 2025;8:100398. https://doi.org/10.1016/j.caeai.2025.100398 DOI: https://doi.org/10.1016/j.caeai.2025.100398
28. Zhang D, Wijaya TT, Wang Y, Su M, Li X, Damayanti NW. Exploring the relationship between AI literacy, AI trust, AI dependency, and 21st century skills in preservice mathematics teachers. Sci Rep. 2025;15:14281. https://doi.org/10.1038/s41598-025-99127-0 DOI: https://doi.org/10.1038/s41598-025-99127-0
29. Consoli T, Petko D. Which educational approaches predict students’ generative AI confidence and responsibility? Comput Educ Artif Intell. 2025;9:100431. https://doi.org/10.1016/j.caeai.2025.100431 DOI: https://doi.org/10.1016/j.caeai.2025.100431
30. Wu Y, Lin Y, Liu Y, Yang Y. A survey on the current status of AI literacy lectures in China’s university libraries under the AIGC background. J Acad Librariansh. 2025;51(5):103111. https://doi.org/10.1016/j.acalib.2025.103111 DOI: https://doi.org/10.1016/j.acalib.2025.103111
31. Granström M, Oppi P. Assessing teachers' readiness and perceived usefulness of AI in education: An Estonian perspective. Front Educ. 2025;10:1622240. https://doi.org/10.3389/feduc.2025.1622240 DOI: https://doi.org/10.3389/feduc.2025.1622240
32. Kohnke L, Moorhouse BL, Zou D. Exploring generative artificial intelligence preparedness among university language instructors: A case study. Comput Educ Artif Intell. 2023;5:100156. https://doi.org/10.1016/j.caeai.2023.100156 DOI: https://doi.org/10.1016/j.caeai.2023.100156
33. Wang X, Li P. Assessment of the relationship between music students' self‐efficacy, academic performance and their artificial intelligence readiness. Eur J Educ. 2024;59(4):e12761. https://doi.org/10.1111/ejed.12761 DOI: https://doi.org/10.1111/ejed.12761
34. Maulana A, Fenitra RM, Sutrisno S. Artificial intelligence, job seeker, and career trajectory: How AI-based learning experiences affect the commitment of fresh graduates to be an accountant? Comput Educ Artif Intell. 2025;100413. https://doi.org/10.1016/j.caeai.2025.100413 DOI: https://doi.org/10.1016/j.caeai.2025.100413
35. Sun F, Tian P, Sun D, Fan Y, Yang Y. Pre‐service teachers' inclination to integrate AI into STEM education: Analysis of influencing factors. Br J Educ Technol. 2024;55(6):2574-96. https://doi.org/10.1111/bjet.13469 DOI: https://doi.org/10.1111/bjet.13469
36. Olawade DB, David-Olawade AC, Rotifa OB, Wada OZ. Artificial intelligence in Nigerian nursing education: Are future nurses prepared for the digital revolution in healthcare? Nurse Educ Pract. 2025;104511. https://doi.org/10.1016/j.nepr.2025.104511 DOI: https://doi.org/10.1016/j.nepr.2025.104511
37. Özer-Altınkaya Z, Yetkin R. Exploring preservice English language teachers’ readiness for AI-integrated language instruction. Pedagogies. 2025;1-17. https://doi.org/10.1080/1554480X.2025.2451299 DOI: https://doi.org/10.1080/1554480X.2025.2451299
38. Brandhofer G, Tengler K. Acceptance of AI applications among teachers and student teachers. Discov Educ. 2025;4(1):1-25. https://doi.org/10.1007/s44217-025-00637-w DOI: https://doi.org/10.1007/s44217-025-00637-w
39. Kowang TO, Yew LK, Fei GC, Hee OC. Determinants of artificial intelligence acceptance among undergraduates. Int J Eval Res Educ. 2025;14(4):2773-80. https://doi.org/10.11591/ijere.v14i4.32565 DOI: https://doi.org/10.11591/ijere.v14i4.32565
40. Alenazi L, Alhalal E. Factors affecting artificial intelligence usage intention among nursing students: Unified theory of acceptance and use of technology. Nurse Educ Today. 2025;106780. https://doi.org/10.1016/j.nedt.2025.106780 DOI: https://doi.org/10.1016/j.nedt.2025.106780
41. Honig C, Rios S, Desu A. Generative AI in engineering education: Understanding acceptance and use of new GPT teaching tools within a UTAUT framework. Australas J Eng Educ. 2025;30(1):80-92. https://doi.org/10.1080/22054952.2025.2467500 DOI: https://doi.org/10.1080/22054952.2025.2467500
42. Wang W, Wang W. College students' behavioral intentions of AI‐assisted language learning: Based on the technology acceptance model. J Comput Assist Learn. 2025;41(4):e70075. https://doi.org/10.1111/jcal.70075 DOI: https://doi.org/10.1111/jcal.70075
43. Wang Y, Yu R. Exploring the factors on the acceptance of generative artificial intelligence teaching assistants: The perspective of technology acceptance model. Int J Hum Comput Interact. 2025;1-15. https://doi.org/10.1080/10447318.2025.2513581 DOI: https://doi.org/10.1080/10447318.2025.2513581
44. Quintana-Ordorika A, Camino-Esturo E, Garay-Ruiz U, Portillo-Berasaluce J. The impact of artificial intelligence on maker education: Motivation and technology acceptance in teacher training. J Educ e-Learn Res. 2025;19(2):295-305. https://doi.org/10.20448/jeelr.v12i2.6893 DOI: https://doi.org/10.20448/jeelr.v12i2.6893
45. Herzallah AM, Makaldy R. Technological self-efficacy and sense of coherence: Key drivers in teachers' AI acceptance and adoption. Comput Educ Artif Intell. 2025; 8:100377. https://doi.org/10.1016/j.caeai.2025.100377 DOI: https://doi.org/10.1016/j.caeai.2025.100377
46. Dietrich LK, Grassini S. Assessing ChatGPT acceptance and use in education: A comparative study among German-speaking students and teachers. Educ Inf Technol. 2025;1-26. https://doi.org/10.1007/s10639-025-13658-7 DOI: https://doi.org/10.1007/s10639-025-13658-7
47. Feldman-Maggor Y, Cukurova M, Kent C, Alexandron G. The impact of explainable AI on teachers’ trust and acceptance of AI EdTech recommendations: The power of domain-specific explanations. Int J Artif Intell Educ. 2025;1-34. https://doi.org/10.1007/s40593-025-00486-6 DOI: https://doi.org/10.1007/s40593-025-00486-6
48. Kalbande D, Yuvaraj M, Verma MK, A S, Suradkar P, Chavan S. Exploring the integration of artificial intelligence in academic libraries: A study on librarians’ perspectives in India. Open Inf Sci. 2024;8(1):20240006. https://doi.org/10.1515/opis-2024-0006 DOI: https://doi.org/10.1515/opis-2024-0006
49. Acosta-Enriquez BG, Villena Zapata LI, Huamaní Jordan O, López Roca C, Cabrera Cipirán BM, Saavedra Villacrez W, Arbulu Perez Vargas CG. Acceptance of artificial intelligence as a teaching strategy among university professors: The role of habit, hedonic motivation, and competence for technology integration. Hum Behav Emerg Technol. 2025;2025(1):5933157. https://doi.org/10.1155/hbe2/5933157 DOI: https://doi.org/10.1155/hbe2/5933157
50. Chang H, Liu B, Zhao Y, Li Y, He F. Research on the acceptance of ChatGPT among different college student groups based on latent class analysis. Interact Learn Environ. 2025;33(1):22-38. https://doi.org/10.1080/10494820.2024.2331646 DOI: https://doi.org/10.1080/10494820.2024.2331646
51. Tomczyk Ł, Majkut A. Integrating AI in education: An analysis of factors influencing the acceptance, concerns, attitudes, competencies and use of generative artificial intelligence among Polish teachers. Hum Behav Emerg Technol. 2025;2025(1):5599169. https://doi.org/10.1155/hbe2/5599169 DOI: https://doi.org/10.1155/hbe2/5599169
52. Gilmore JN, Whims T, Blair BW, Katarzynski B, Steffen L. Technology acceptance, moral panic, and perceived ease of use: Negotiating ChatGPT at research one universities. Convergence. 2025;31(4):1251-66. https://doi.org/10.1177/13548565251337576 DOI: https://doi.org/10.1177/13548565251337576
53. Wang Z, Wang C. A posthumanist approach to AI literacy. Comput Compos. 2025; 76:102933. https://doi.org/10.1016/j.compcom.2025.102933 DOI: https://doi.org/10.1016/j.compcom.2025.102933
54. Razak FZA, Abdullah MA, Ahmad BE, Bakar WHRBWA, Misaridin NAFB. The acceptance of artificial intelligence in education among postgraduate students in Malaysia. Educ Inf Technol. 2025;30(3):2977-97. https://doi.org/10.1007/s10639-024-12916-4 DOI: https://doi.org/10.1007/s10639-024-12916-4
55. Celik I, Muukkonen H, Siklander S. Teacher–artificial intelligence (AI) interaction: The role of trust, subjective norm and innovativeness in teachers’ acceptance of educational chatbots. Policy Futures Educ. 2025;0(0). https://doi.org/10.1177/14782103251348551 DOI: https://doi.org/10.1177/14782103251348551
56. Kurniawan RY, Mahfudhoh AI, Rohayati S, Dewi RM, Kamalia PU, Majid MZA. The use of unified theory of acceptance and use of technology to analyze students’ behavioral interests in utilizing Gemini AI. Int J Inf Educ Technol. 2025;15(7):1496-1511. https://doi.org/10.18178/ijiet.2025.15.7.2351 DOI: https://doi.org/10.18178/ijiet.2025.15.7.2351
57. Zou B, Lyu Q, Han Y, Li Z, Zhang W. Exploring students’ acceptance of an artificial intelligence speech evaluation program for EFL speaking practice: An application of the integrated model of technology acceptance. Comput Assist Lang Learn. 2023;38(5-6):1366-1391. https://doi.org/10.1080/09588221.2023.2278608 DOI: https://doi.org/10.1080/09588221.2023.2278608
58. Setia MS. Methodology series module 3: Cross-sectional studies. Indian J Dermatol. 2016;61(3):261-4. https://doi.org/10.4103/0019-5154.182410 DOI: https://doi.org/10.4103/0019-5154.182410
59. Wang S, Wang F, Zhu Z, Wang J, Tran T, Du Z. Artificial intelligence in education: A systematic literature review. Expert Syst Appl. 2024;252(Pt A):124167. https://doi.org/10.1016/j.eswa.2024.124167. DOI: https://doi.org/10.1016/j.eswa.2024.124167
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Keir A. Balasa (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.

