The impact of artificial intelligence on prostate cancer diagnosis through magnetic resonance imaging
DOI:
https://doi.org/10.56294/ai2024144Keywords:
Prostate cancer, artificial intelligence, MRIAbstract
The study examines the impact of artificial intelligence (AI) on the diagnosis of prostate cancer using magnetic resonance imaging (MRI), emphasizing its ability to overcome the limitations of traditional methods. Through a systematic review based on the PRISMA guidelines, 20 recent studies (2023-2024) employing advanced techniques such as convolutional neural networks, deep learning, and computer-aided detection systems were evaluated. Findings revealed that AI significantly enhances diagnostic accuracy, achieving areas under the curve (AUC) of up to 0.997, 99.5% sensitivity, and 99% specificity, while reducing interobserver variability and the need for invasive procedures. Additionally, limitations related to the required technological infrastructure and algorithm transparency were identified. The study concludes that AI is an essential tool in modern diagnosis, complementing traditional methods and improving the precision and efficiency of prostate cancer detection.
References
1. O’Dowd G, Bell S, Wright S. Wheater’s pathology: A text, atlas and review of histopathology: With STUDENT CONSULT online access. 6a ed. Londres, Inglaterra: Churchill Livingstone; 2019.
2. Estadísticas importantes sobre el cáncer de próstata [Internet]. Cancer.org. [citado el 24 de noviembre de 2024]. Disponible en: https://www.cancer.org/es/cancer/tipos/cancer-de-prostata/acerca/estadisticas-clave.html
3. Minsa continúa realizando acciones a nivel nacional para la detección temprana del cáncer de próstata [Internet]. Gob.pe. [citado el 24 de noviembre de 2024]. Disponible en: https://www.gob.pe/institucion/minsa/noticias/980265-minsa-continua-realizando-acciones-a-nivel-nacional-para-la-deteccion-temprana-del-cancer-de-prostata
4. Islas Pérez LÁ, Martínez Reséndiz JI, Ruiz Hernández A, Ruvalcaba Ledezma JC, Benítez Medina A, Beltran Rodríguez MG, et al. Epidemiología del cáncer de próstata, sus determinantes y prevención. J Negat No Posit Results [Internet]. 2020 [citado el 24 de noviembre de 2024];5(9):1010–22. Disponible en: https://scielo.isciii.es/scielo.php?pid=S2529-850X2020000901010&script=sci_arttext
5. Ramírez K. Cerca de 2200 varones fallecerán por cáncer de próstata en 2030, según estudio [Internet]. Cientifica Divulga. 2024 [citado el 24 de noviembre de 2024]. Disponible en: https://divulga.cientifica.edu.pe/nuestra-ciencia/cerca-de-2200-varones-falleceran-por-cancer-de-prostata-en-2030-segun-estudio/
6. NCI. Inteligencia artificial para ver el cáncer de formas nuevas y más eficaces [Internet]. Cancer.gov. 2022 [citado el 24 de noviembre de 2024]. Disponible en: https://www.cancer.gov/espanol/noticias/temas-y-relatos-blog/2022/inteligencia-artificial-imagenes-cancer
7. Pellicer-Valero OJ, Marenco Jiménez JL, Gonzalez-Perez V, Casanova Ramón-Borja JL, Martín García I, Barrios Benito M, et al. Deep Learning for fully automatic detection, segmentation, and Gleason Grade estimation of prostate cancer in multiparametric Magnetic Resonance Images. arXiv preprint arXiv:2103.12650. Disponible en: https://arxiv.org/abs/2103.12650
8. Alqahtani S. Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Enhancing Accuracy Through Second Opinion Tools. Diagnostics. 2024;14:2576. doi:10.3390/diagnostics14222576. Disponible en: https://doi.org/10.3390/diagnostics14222576
9. NCI. Investigadores crean planteamiento de IA para exámenes de detección de cáncer de cuello uterino [Internet]. Cancer.gov. 2019 [citado el 24 de noviembre de 2024]. Disponible en: https://www.cancer.gov/espanol/noticias/comunicados-de-prensa/2019/aprendizaje-profundo-cancer-cuello-uterino-examenes-de-deteccion
10. Hart TJ, Engler Hart C, Hopson S, Urie PM, Della Corte D. Overcoming Limitations in Artificial Intelligence-based Prostate Cancer Detection through Better Datasets and a Bayesian Approach to Aggregate Panel Predictions. arXiv preprint arXiv:2406.06801. Disponible en: https://arxiv.org/abs/2406.06801
11. Liu B, Wang Y, Weitz P, Lindberg J, Hartman J, Egevad L, et al. Using deep learning to detect patients at risk for prostate cancer despite benign biopsies. arXiv preprint arXiv:2106.14256. Disponible en: https://arxiv.org/abs/2106.14256
12. Molière S. A Systematic Review of the Diagnostic Accuracy of Deep Learning Models for the Automatic Detection, Localization, and Characterization of Clinically Significant Prostate Cancer on Magnetic Resonance Imaging. Eur Urol Oncol. Doi:2024;11:10.1016/j.euo.2024.11.001.
13. Van der Leest M, Cornel E, Israël B, et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol. Doi:2019;75(4):570-578. doi:10.1016/j.eururo.2018.11.023 DOI: https://doi.org/10.1016/j.eururo.2018.11.023
14. Shao W, Pedrosa I, Bonekamp D, et al. Systematic Review of AI-Assisted MRI in Prostate Cancer Diagnosis: Accuracy, Outcomes, and Future Trends. Diagnostics (Basel). Doi:2024;14(22):2576. doi:10.3390/diagnostics14222576 DOI: https://doi.org/10.3390/diagnostics14222576
15. Correia E, et al. A Systematic Review of the Diagnostic Accuracy of Deep Learning Models for the Automatic Detection, Localization, and Characterization of Clinically Significant Prostate Cancer on Magnetic Resonance Imaging. Abdom Radiol. Doi:2024;49:10.1007/s00261-024-04423-4.
16. Lin Y, et al. Deep learning-based image quality assessment: impact on detection accuracy of prostate cancer extraprostatic extension on MRI. Abdom Radiol. Doi:2024;49:10.1007/s00261-024-04468-5. DOI: https://doi.org/10.1007/s00261-024-04468-5
17. Jaouen T, et al. Characterization of high-grade prostate cancer at multiparametric MRI using a radiomic-based computer-aided diagnosis system as standalone and second reader. Diagn Interv Imaging. Doi:2024;105:10.1016/j.diii.2023.04.006.
18. Elkhayat H, Gadelkarim M, Elsharkawy M, et al. 3T multiparametric MRI’s accuracy in detecting prostate cancer using PI-RADS v2.1. Egypt J Radiol Nucl Med. 2023;54(1):1-9. Doi:10.1186/s43055-024-01244-9 DOI: https://doi.org/10.1186/s43055-024-01244-9
19. Arroyo M, et al. Artificial Intelligence in Prostate Cancer: Current Status and Future Directions. Healthcare (Basel). Doi:2023;11:10.3390/healthcare11040590.
20. Talyshinskii A, et al. Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management. Cancers (Basel). Doi:2024;16:10.3390/cancers16101809. DOI: https://doi.org/10.3390/cancers16101809
21. Mayer R, et al. Autonomous Tumor Signature Extraction Applied to Spatially Registered Bi-Parametric MRI to Predict Prostate Tumor Aggressiveness: A Pilot Study. Cancers (Basel). Doi:2024;16:10.3390/cancers16101822. DOI: https://doi.org/10.3390/cancers16101822
22. Hashem H, et al. An Enhanced Deep Learning Technique for Prostate Cancer Identification Based on MRI Scans. arXiv. Doi:2024;2208.00583. 10.48550/arXiv.2208.00583.
23. Islam R, et al. Prostate Cancer Detection from MRI Using Efficient Feature Extraction with Transfer Learning. J Healthc Eng. Doi:2024;10.1155/2024/1588891. DOI: https://doi.org/10.1155/2024/1588891
24. Feretzakis G, et al. Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review. Cancers (Basel). Doi:2024;16:10.3390/cancers16040810. DOI: https://doi.org/10.3390/cancers16040810
25. Saha A, et al. "Artificial Intelligence and Radiologists in Prostate Cancer Detection: The PI-CAI Study." European Urology, 2024. Doi:10.1016/j.eururo.2024.01.010. DOI: https://doi.org/10.1016/j.eururo.2024.01.010
26. Horasa A, et al. Advancing Prostate Cancer Diagnosis: A Deep Learning Approach for Enhanced Detection in MRI Images. Diagnostics (Basel). Doi:2024;14:10.3390/diagnostics14171871.
27. Liu JC, et al. MRI T2w Radiomics-Based Machine Learning Models in Imaging Simulated Biopsy Add Diagnostic Value to PI-RADS in Predicting Prostate Cancer: A Retrospective Diagnostic Study. Cancers (Basel). Doi:2024;16:10.3390/cancers16172944. DOI: https://doi.org/10.3390/cancers16172944
28. Andreu A, et al. The Role of Radiomics in the Prediction of Clinically Significant Prostate Cancer in the PI-RADS v2 and v2.1 Era: A Systematic Review. Cancers (Basel). Doi:2024;16:10.3390/cancers16172951. DOI: https://doi.org/10.3390/cancers16172951
29. Factors of interobserver variability in prostate tumor MRI delineation: the role of PI-QUAL score. Radiol Med. 2024. Doi:10.1007/s11547-024-01920-w. DOI: https://doi.org/10.1007/s11547-024-01920-w
30. Advancing Prostate Cancer Diagnosis: A Deep Learning Approach for Enhanced Detection. Diagnostics (Basel). 2023;14(17):1871. Doi:10.3390/diagnostics14171871. DOI: https://doi.org/10.3390/diagnostics14171871
31. Chaddad A, et al. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers (Basel). Doi:2023;15:10.3390/cancers15153839. DOI: https://doi.org/10.3390/cancers15153839
32. Rippa M, et al. Evaluation of Machine Learning Classification Models for False-Positive Reduction in Prostate Cancer Detection Using MRI Data. Diagnostics (Basel). Doi:2024;14:10.3390/diagnostics14151677. DOI: https://doi.org/10.3390/diagnostics14151677
33. Ragab M, et al. Archimedes Optimization Algorithm with Deep Learning-Based Prostate Cancer Classification on Magnetic Resonance Imaging. Healthcare (Basel). Doi:2023;11:10.3390/healthcare11040590. DOI: https://doi.org/10.3390/healthcare11040590
34. Burns JE, Yao J, Summers RM. Artificial Intelligence for Automated Cancer Detection on Prostate MRI: A Diagnostic Accuracy Study. AJR Am J Roentgenol. 2021;216(6):1464-1471. doi:10.2214/AJR.21.26917. DOI: https://doi.org/10.2214/AJR.21.26917
35. Wang Y, Liu W, Chen Z, et al. A noninvasive method for predicting clinically significant prostate cancer using magnetic resonance imaging combined with PRKY promoter methylation level: a machine learning study. BMC Med Imaging. 2024;24(1):60. doi:10.1186/s12880-024-01236-1. DOI: https://doi.org/10.1186/s12880-024-01236-1
36. Nematollahi H. Diagnostic Performance Evaluation of Multiparametric Magnetic Resonance Imaging in the Detection of Prostate Cancer with Supervised Machine Learning Methods. Diagnostics (Basel). Doi:2023;13:10.3390/diagnostics13040806. DOI: https://doi.org/10.3390/diagnostics13040806
37. Pellicer-Valero OJ, Marenco Jiménez JL, Gonzalez-Perez V, Casanova Ramón-Borja JL, Martín García I, Barrios Benito M, et al. Deep Learning for fully automatic detection, segmentation, and Gleason Grade estimation of prostate cancer in multiparametric Magnetic Resonance Images. arXiv preprint arXiv:2103.12650. Disponible en: https://arxiv.org/abs/2103.12650
38. Hart TJ, Engler Hart C, Hopson S, Urie PM, Della Corte D. Overcoming Limitations in Artificial Intelligence-based Prostate Cancer Detection through Better Datasets and a Bayesian Approach to Aggregate Panel Predictions. arXiv preprint arXiv:2406.06801. Disponible en: https://arxiv.org/abs/2406.06801
39. Gaudiano C. An Apparent Diffusion Coefficient-Based Machine Learning Model Can Improve Prostate Cancer Detection in the Grey Area of the Prostate Imaging Reporting and Data System Category 3: A Single-Centre Experience. Cancers (Basel). Doi:2023;15:10.3390/cancers15133438. DOI: https://doi.org/10.3390/cancers15133438
40. Guljaš S, Krivdić M. Dynamic Contrast-Enhanced Study in the mpMRI of the Prostate—Unnecessary or Underutilised? A Narrative Review. Diagnostics (Basel). Doi:2023;13:10.3390/diagnostics13223488. DOI: https://doi.org/10.3390/diagnostics13223488
Published
Issue
Section
License
Copyright (c) 2024 C. Ramirez Chávez , Enzo Bazualdo Fiorini , Segundo Bueno Ordoñez (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.

